Expression of myopodin, an actin associated protein, is frequently lost in invasive prostate cancers due to partial or complete deletion of the gene. Screening of public databases reveals that two human myopodin isoforms have been proposed. Remarkably both isoforms deviate profoundly from the human or mouse isoforms examined to date. Here, we investigated expression of human myopodin. Rapid amplification of cDNA ends revealed a new myopodin transcript, hitherto unpredicted by public databases. RT-PCR analysis indicates that the new isoform (Myo2), in addition to the two predicted isoforms (Myo1 and Myo3), are transcribed in various mammalian cell lines. The three isoforms (Myo1-3) are translated into full length proteins of 1093, 1109, and 1261 amino acids, respectively, when expressed in cells. Thus, mammalian cells simultaneously express at least three myopodin isoforms with a common N-terminal PDZ domain, but a dissimilar carboxy-terminal amino acid tract. These findings shed new light on the expression of this tumor suppressor gene and necessitate closer examination of both mouse and human myopodin polypeptides currently under study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2008.03.086 | DOI Listing |
Cells
December 2023
Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany.
Synaptopodin-2 (SYNPO2) is a protein associated with the Z-disc in striated muscle cells. It interacts with α-actinin and filamin C, playing a role in Z-disc maintenance under stress by chaperone-assisted selective autophagy (CASA). In smooth muscle cells, SYNPO2 is a component of dense bodies.
View Article and Find Full Text PDFExp Cell Res
November 2021
Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany. Electronic address:
Protein homeostasis (proteostasis) in multicellular organisms depends on the maintenance of force-bearing and force-generating cellular structures. Within myofibrillar Z-discs of striated muscle, isoforms of synaptopodin-2 (SYNPO2/myopodin) act as adapter proteins that are engaged in proteostasis of the actin-crosslinking protein filamin C (FLNc) under mechanical stress. SYNPO2 directly binds F-actin, FLNc and α-actinin and thus contributes to the architectural features of the actin cytoskeleton.
View Article and Find Full Text PDFOrphanet J Rare Dis
February 2021
Department of Pediatric Neurology, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
Background: The elucidation of pathomechanisms leading to the manifestation of rare (genetically caused) neurological diseases including neuromuscular diseases (NMD) represents an important step toward the understanding of the genesis of the respective disease and might help to define starting points for (new) therapeutic intervention concepts. However, these "discovery studies" are often limited by the availability of human biomaterial. Moreover, given that results of next-generation-sequencing approaches frequently result in the identification of ambiguous variants, testing of their pathogenicity is crucial but also depending on patient-derived material.
View Article and Find Full Text PDFAutophagy
July 2019
a Department of Anesthesiology , University of Rochester, Rochester , NY , USA.
A major cellular catabolic pathway in neurons is macroautophagy/autophagy, through which misfolded or aggregation-prone proteins are sequestered into autophagosomes that fuse with lysosomes, and are degraded. MAPT (microtubule-associated protein tau) is one of the protein clients of autophagy. Given that accumulation of hyperphosphorylated MAPT contributes to the pathogenesis of Alzheimer disease and other tauopathies, decreasing endogenous MAPT levels has been shown to be beneficial to neuronal health in models of these diseases.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2018
Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, 07743, Jena, Germany. Electronic address:
Actin filament formation plays a pivotal role in the development, regeneration and modulation of the morphologies and physiological functions of subcellular compartments and entire cells. All of these processes require tight temporal and spatial control of F-actin assembly. Recent work has shed new light on the control of actin filament formation by Ca as very fast, transient messenger allowing for defined responses to signal intensities spanning several orders of magnitude.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!