Multiple isoforms of the tumor suppressor myopodin are simultaneously transcribed in cancer cells.

Biochem Biophys Res Commun

Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium.

Published: May 2008

Expression of myopodin, an actin associated protein, is frequently lost in invasive prostate cancers due to partial or complete deletion of the gene. Screening of public databases reveals that two human myopodin isoforms have been proposed. Remarkably both isoforms deviate profoundly from the human or mouse isoforms examined to date. Here, we investigated expression of human myopodin. Rapid amplification of cDNA ends revealed a new myopodin transcript, hitherto unpredicted by public databases. RT-PCR analysis indicates that the new isoform (Myo2), in addition to the two predicted isoforms (Myo1 and Myo3), are transcribed in various mammalian cell lines. The three isoforms (Myo1-3) are translated into full length proteins of 1093, 1109, and 1261 amino acids, respectively, when expressed in cells. Thus, mammalian cells simultaneously express at least three myopodin isoforms with a common N-terminal PDZ domain, but a dissimilar carboxy-terminal amino acid tract. These findings shed new light on the expression of this tumor suppressor gene and necessitate closer examination of both mouse and human myopodin polypeptides currently under study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2008.03.086DOI Listing

Publication Analysis

Top Keywords

human myopodin
12
tumor suppressor
8
public databases
8
myopodin isoforms
8
myopodin
7
isoforms
6
multiple isoforms
4
isoforms tumor
4
suppressor myopodin
4
myopodin simultaneously
4

Similar Publications

Synaptopodin-2 (SYNPO2) is a protein associated with the Z-disc in striated muscle cells. It interacts with α-actinin and filamin C, playing a role in Z-disc maintenance under stress by chaperone-assisted selective autophagy (CASA). In smooth muscle cells, SYNPO2 is a component of dense bodies.

View Article and Find Full Text PDF

Protein homeostasis (proteostasis) in multicellular organisms depends on the maintenance of force-bearing and force-generating cellular structures. Within myofibrillar Z-discs of striated muscle, isoforms of synaptopodin-2 (SYNPO2/myopodin) act as adapter proteins that are engaged in proteostasis of the actin-crosslinking protein filamin C (FLNc) under mechanical stress. SYNPO2 directly binds F-actin, FLNc and α-actinin and thus contributes to the architectural features of the actin cytoskeleton.

View Article and Find Full Text PDF

Background: The elucidation of pathomechanisms leading to the manifestation of rare (genetically caused) neurological diseases including neuromuscular diseases (NMD) represents an important step toward the understanding of the genesis of the respective disease and might help to define starting points for (new) therapeutic intervention concepts. However, these "discovery studies" are often limited by the availability of human biomaterial. Moreover, given that results of next-generation-sequencing approaches frequently result in the identification of ambiguous variants, testing of their pathogenicity is crucial but also depending on patient-derived material.

View Article and Find Full Text PDF

A major cellular catabolic pathway in neurons is macroautophagy/autophagy, through which misfolded or aggregation-prone proteins are sequestered into autophagosomes that fuse with lysosomes, and are degraded. MAPT (microtubule-associated protein tau) is one of the protein clients of autophagy. Given that accumulation of hyperphosphorylated MAPT contributes to the pathogenesis of Alzheimer disease and other tauopathies, decreasing endogenous MAPT levels has been shown to be beneficial to neuronal health in models of these diseases.

View Article and Find Full Text PDF

Direct effects of Ca/calmodulin on actin filament formation.

Biochem Biophys Res Commun

November 2018

Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, 07743, Jena, Germany. Electronic address:

Actin filament formation plays a pivotal role in the development, regeneration and modulation of the morphologies and physiological functions of subcellular compartments and entire cells. All of these processes require tight temporal and spatial control of F-actin assembly. Recent work has shed new light on the control of actin filament formation by Ca as very fast, transient messenger allowing for defined responses to signal intensities spanning several orders of magnitude.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!