Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have measured the total electron scattering cross sections of several NMR shift reagent molecules X(hfc)3, where X = Yb, Er, Eu and Pr, by means of electron transmission spectroscopy (ETS) to determine their vertical attachment energies. A strong low-energy resonance (<1 eV) is observed in all of the compounds except for Yb(hfc)3. We explain this anomaly in terms of the ground-state electron configuration of each molecule. Also, with the aid of restricted open-shell Hartree-Fock (ROHF) calculations on analogous molecules with truncated fluorocarbon chains, we have assigned specific normally unoccupied orbitals to the resonances observed in ETS. To our knowledge, these molecules are the largest for which this procedure has been successfully completed. Nolting et al. (J. Phys. B 1997, 30, 5491) have demonstrated that the above NMR shift reagents exhibit electron circular dichroism (ECD) between 1 and 10 eV. Using our new total cross section data, we comment on the possibility of resonance involvement in the generation of ECD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp7115164 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!