Metabolic activation of the antitumor drug 5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by NO synthases.

Chem Res Toxicol

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université R. Descartes, UMR 8601 CNRS, 45 rue des Saints-Pères, 75270 Paris cedex 06, France.

Published: April 2008

Nitric oxide synthases (NOSs) are flavohemeproteins that catalyze the oxidation of L-arginine to L-citrulline with formation of the signaling molecule nitric oxide (NO). In addition to their fundamental role in NO biosynthesis, NOSs are also involved in the formation of reactive oxygen and nitrogen species (RONS) and in the interactions with some drugs. 5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) is a dinitroaromatic compound tested as an antitumor prodrug that requires reduction to the 2- and 4-hydroxylamines to be cytotoxic. Here, we studied the interaction of neuronal, inducible, and endothelial NOSs with CB1954. Our results showed that the three purified recombinant NOSs selectively reduced the 4-nitro group of CB1954 to the corresponding 4-hydroxylamine with minimal 2-nitroreduction. Little further two-electron reduction of the hydroxylamines to the corresponding 2- and 4-amines was observed. The reduction of CB1954 catalyzed by the neuronal NOS (nNOS) was inhibited by O 2 and a flavin/NADPH binding inhibitor, diphenyliodonium (DPI), but insensitive to the addition of the heme ligands imidazole and carbon monoxide and of l-arginine analogues. This reduction proceeded with intermediate formation of a nitro-anion free radical observed by EPR. Involvement of the reductase domain of nNOS in the reduction of CB1954 was confirmed by the ability of the isolated reductase domain of nNOS to catalyze the reaction and by the stimulating effect of Ca (2+)/calmodulin on the accumulation of 4- and 2-hydroxylamines. The recombinant inducible and endothelial NOS isoforms reduced CB1954 with lower activity but higher selectivity for the cytotoxic 4-hydroxylamine compared with nNOS. Finally, CB1954 did not modify the formation of l-citrulline and RONS catalyzed by nNOS. Our results show that all three NOS isoforms are involved in the nitroreduction of CB1954, with predominant formation of the cytotoxic 4-hydroxylamine derivative. This nitroreduction could be of interest for the selective activation of prodrugs by NOSs overexpressed in tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx7004234DOI Listing

Publication Analysis

Top Keywords

cb1954
9
5-aziridin-1-yl-24-dinitrobenzamide cb1954
8
nitric oxide
8
inducible endothelial
8
reduction cb1954
8
reductase domain
8
domain nnos
8
cytotoxic 4-hydroxylamine
8
noss
5
formation
5

Similar Publications

Bacterial nitroreductase enzymes capable of activating imaging probes and prodrugs are valuable tools for gene-directed enzyme prodrug therapies and targeted cell ablation models. We recently engineered a nitroreductase ( NfsB F70A/F108Y) for the substantially enhanced reduction of the 5-nitroimidazole PET-capable probe, SN33623, which permits the theranostic imaging of vectors labeled with oxygen-insensitive bacterial nitroreductases. This mutant enzyme also shows improved activation of the DNA-alkylation prodrugs CB1954 and metronidazole.

View Article and Find Full Text PDF

Bacterial nitroreductase enzymes that convert prodrugs to cytotoxins are valuable tools for creating transgenic targeted ablation models to study cellular function and cell-specific regeneration paradigms. We recently engineered a nitroreductase ("NTR 2.0") for substantially enhanced reduction of the prodrug metronidazole, which permits faster cell ablation kinetics, cleaner interrogations of cell function, ablation of previously recalcitrant cell types, and extended ablation paradigms useful for modelling chronic diseases.

View Article and Find Full Text PDF

NfsB has been studied extensively for its potential for cancer gene therapy by reducing the prodrug CB1954 to a cytotoxic derivative. We have previously made several mutants with enhanced activity for the prodrug and characterised their activity in vitro and in vivo. Here, we determine the X-ray structure of our most active triple and double mutants to date, T41Q/N71S/F124T and T41L/N71S.

View Article and Find Full Text PDF

Nitroreductases activate nitroaromatic antibiotics and cancer prodrugs to cytotoxic hydroxylamines and reduce quinones to quinols. Using steady-state and stopped-flow kinetics, we show that the Escherichia coli nitroreductase NfsA is 20-50 fold more active with NADPH than with NADH and that product release may be rate-limiting. The crystal structure of NfsA with NADP shows that a mobile loop forms a phosphate-binding pocket.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!