A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of electroporation on cardiac electrophysiology. | LitMetric

Effect of electroporation on cardiac electrophysiology.

Methods Mol Biol

Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.

Published: June 2008

Defibrillation shocks are commonly used to terminate life-threatening arrhythmias. According to the excitation theory of defibrillation, such shocks are aimed at depolarizing the membranes of most cardiac cells, resulting in resynchronization of electrical activity in the heart. If shock-induced transmembrane potentials are large enough, they can cause transient tissue damage due to electroporation. In this review, evidence is presented that electroporation of the heart tissue can occur during clinically relevant intensities of the external electrical field and that electroporation can affect the outcome of defibrillation therapy, being both pro- and antiarrhythmic.Here, we present experimental evidence for electroporation in cardiac tissue, which occurs above a threshold of 25 V/cm as evident from propidium iodide uptake, transient diastolic depolarization, and reductions of action potential amplitude and its derivative. These electrophysiological changes can induce tachyarrhythmia, due to conduction block and possibly triggered activity; however, our findings provide the foundation for future design of effective methods to deliver genes and drugs to cardiac tissues, while avoiding possible side effects such as arrhythmia and mechanical stunning.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-194-9_34DOI Listing

Publication Analysis

Top Keywords

electroporation cardiac
8
defibrillation shocks
8
electroporation
5
cardiac electrophysiology
4
electrophysiology defibrillation
4
shocks commonly
4
commonly terminate
4
terminate life-threatening
4
life-threatening arrhythmias
4
arrhythmias excitation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!