We describe here a method for analyzing a rat liver nuclear-insoluble protein fraction to determine candidate proteins participating in nuclear architecture formation. Rat liver nuclei are purified by sucrose density gradient centrifugation. The purified nuclei are treated with DNase and RNase and then washed with high salt and detergent solutions. The residual nuclear-insoluble protein fraction is separated by reversed-phase high-performance liquid chromatography (HPLC) in 60% formic acid on a polystyrene resin column. This system allows good resolution and high recovery of most insoluble proteins, including intrinsic membrane proteins and even proteins larger than 140 kDa, with more than 70% recovery. The LC-fractionated proteins are further separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein bands are excised, in-gel digested with trypsin, and then analyzed with a protein sequencer or mass spectrometer. Using this protocol, 138 were separated, 29 were identified, among which one appears as a novel nuclear constituent localized in the interchromatin space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-59745-028-7_9 | DOI Listing |
Life Sci
June 2022
Department of Gastroenterology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
Aims: Autophagic dysfunction is associated with the progression of various liver diseases, including nonalcoholic fatty liver disease (NAFLD). However, serum markers for evaluating autophagic function have not been reported. Highly insoluble nuclear proteins participate in many cellular functions and are potential diagnostic markers for cancer.
View Article and Find Full Text PDFNat Commun
February 2021
Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, Poland.
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an incurable neurodegenerative disorder caused by expansion of CGG repeats in the FMR1 5'UTR. The RNA containing expanded CGG repeats (rCGG) causes cell damage by interaction with complementary DNA, forming R-loop structures, sequestration of nuclear proteins involved in RNA metabolism and initiation of translation of polyglycine-containing protein (FMRpolyG), which forms nuclear insoluble inclusions. Here we show the therapeutic potential of short antisense oligonucleotide steric blockers (ASOs) targeting directly the rCGG.
View Article and Find Full Text PDFNeuron
November 2016
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Molecular Engineering Laboratory, A(∗)STAR, Singapore 138673, Singapore. Electronic address:
HnRNPA2B1 encodes an RNA binding protein associated with neurodegeneration. However, its function in the nervous system is unclear. Transcriptome-wide crosslinking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ∼2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation.
View Article and Find Full Text PDFEMBO J
September 2012
Genome Dynamics Project, Department of Genome Medicine, Tokyo, Japan.
DNA replication is spatially and temporally regulated during S-phase. DNA replication timing is established in early-G1-phase at a point referred to as timing decision point. However, how the genome-wide replication timing domains are established is unknown.
View Article and Find Full Text PDFSci Signal
December 2011
Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec H3A 1B1, Canada.
Direct comparison of protein distribution between the nucleus, the cytoplasm, and the plasma membrane is important for understanding cellular processes and, in particular, signal transduction, where cascades generated at the cell surface regulate functions in other cellular compartments, such as the nucleus. Yet, many commonly used methods fail to effectively separate the plasma membrane and the cytoskeleton from the nucleus, and the cytosol from the nucleosol. This problem has led to confounding results in the study of signaling pathways due to incorrect assignment of cellular localization to signaling molecules and presents challenges in the biochemical study of soluble proteins that shuttle between the cytoplasm and the nucleus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!