Labeling stem cells in vitro for identification of their differentiated phenotypes after grafting into the CNS.

Methods Mol Biol

Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, USA.

Published: April 2008

Grafting neural stem cells is a widely used experimental approach to central nervous system (CNS) repair after trauma or neurodegeneration. It is likely to be a realistic clinical therapy for human CNS disorders in the near future. One of the challenges of this approach is the ability to identify both the survival and differentiated phenotype of various stem cell populations after engraftment into the CNS. There is no single protocol that will work for all cell types and all applications. Labeling stem cells for CNS grafting is an empirical process. The type of stem cell, its fate after engraftment, and the context in which it is anatomically and histologically evaluated all contribute to a decision as to the best approach to take. We have provided the range of conditions under which various labels have been successfully used in CNS grafting studies and delineated the parameters that have to be empirically established. Given a clear understanding of the limitations of the respective labels and the expected outcome of the grafting experiment, these labeling guidelines should enable any investigator to develop a successful approach. Our own personal bias is to use labels that cannot be transferred to host cells. Initially, we preferred 5-bromo-2'-deoxyuridine, or retrovirally delivered enhanced green fluorescent protein or lacZ. More recently, we have found syngeneic grafts of human placental alkaline phosphatase stem cells to work very well. However, each investigator will have to decide what is optimal for his or her cell population and experimental design. We summarize the various approaches to labeling and identifying stem cells, pointing out both the limitations and strengths of the various approaches delineated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-133-8_28DOI Listing

Publication Analysis

Top Keywords

stem cells
20
cns grafting
12
labeling stem
8
stem cell
8
cells
6
cns
6
stem
6
grafting
5
labeling
4
cells vitro
4

Similar Publications

MiRNAs: main players of cancer drug resistance target ABC transporters.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.

Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters.

View Article and Find Full Text PDF

De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).

View Article and Find Full Text PDF

CD9/SOX2-positive cells in the intermediate lobe of the rat pituitary gland exhibit mesenchymal stem cell characteristics.

Cell Tissue Res

January 2025

Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.

Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.

View Article and Find Full Text PDF

Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Curr Obes Rep

January 2025

Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.

Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.

Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.

View Article and Find Full Text PDF

The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!