A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Degradation and sorption of imidacloprid in dissimilar surface and subsurface soils. | LitMetric

Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg(-1) degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg(-1) application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to >70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of (14)C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative (14)CO(2) was less than 1.5% of applied (14)C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03601230701771107DOI Listing

Publication Analysis

Top Keywords

subsurface soils
24
surface subsurface
12
soils
9
degradation sorption
8
imidacloprid
8
sorption imidacloprid
8
exeter sandy
8
sandy loam
8
loam surface
8
drummer surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!