Thirty-two adult Wistar-Albino female and male rats were used to investigate the long-term (45 days) effects of extremely low frequency magnetic field (ELF-MF; 50Hz, 1mT, 4h/day) exposure on oxidative/nitrosative stress in liver tissues of rats. The rats were divided randomly into four groups: female control (FC; n = 8) and MF-exposed female rats (F-MF; n = 8); male control (MC; n = 8) and MF-exposed male rats (M-MF; n = 8). Liver tissue from each animal was harvested and utilized for malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) detection. MDA levels were measured by MDA-TBA method, while the 3-NT levels were determined by the HPLC-UV system. There were no significant differences between the MDA levels of the control (FC; MC) and MF-exposed (F-MF; M-MF) rats (P > 0.05). In the F-MF rats, 3-NT levels were significantly increased when compared to those of the FC rats (P < 0.05). There were no significant differences between the 3-NT levels of the MC and M-MF rats. In conclusion, our study suggests that the long-term ELF-MF exposure may enhance the oxidative/nitrosative stress in liver tissue of the female rats and could have a deteriorative effect on cellular proteins rather than lipids by enhancing 3-NT formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1269/jrr.07070 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey.
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia.
Alcohol-associated liver disease (ALD) is a common non-communicable chronic liver disease characterized by a spectrum of conditions ranging from steatosis and alcohol-associated steatohepatitis (AH) to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The pathogenesis of ALD involves a complex interplay of various molecular, biochemical, genetic, epigenetic, and environmental factors. While the mechanisms are well studied, therapeutic options remain limited.
View Article and Find Full Text PDFMetabol Open
March 2025
Hepatogastroenterology and Infectious Diseases Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt.
Background: Tissue damage by viral hepatitis is a major cause of morbidity and mortality worldwide. Oxidation reactions and reactive oxygen species (ROS) transform proteins and lipids in plasma low-density lipoproteins (LDL) into the abnormal oxidized LDL (ox-LDL). Hepatitis C virus (HCV) infection induces oxidative/nitrosative stress from multiple sources, including the inducible nitric oxide synthase (iNOS), the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases (NOX enzymes), and inflammation.
View Article and Find Full Text PDFAmino Acids
January 2025
Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece.
Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity.
View Article and Find Full Text PDFMedicina (Kaunas)
November 2024
SIC Medicina Legale, Via Potito Petrone, 85100 Potenza, Italy.
: A large amount of recent evidence suggests that cellular inability to consume oxygen could play a notable part in promoting sepsis as a consequence of mitochondrial dysfunction and oxidative stress. The latter could, in fact, represent a fundamental stage in the evolution of the "natural history" of sepsis. Following a study previously conducted by the same working group on heart samples, the present research project aims to evaluate, through an immunohistochemical study, the existence and/or extent of oxidative stress in the brains of subjects who died due to sepsis and define, after reviewing the literature, its contribution to the septic process to support the use of medications aimed at correcting redox anomalies in the management of septic patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!