Birdsong, like human speech, is a series of learned vocal gestures resulting from the coordination of vocal and respiratory brainstem networks under the control of the telencephalon. The song motor circuit includes premotor and motor cortical analogs, known as HVC (used as a proper name) and RA (the robust nucleus of the arcopallium), respectively. Previous studies showed that HVC projects to RA and that RA projection neurons (PNs) topographically innervate brainstem vocal-motor and respiratory networks. The idea that singing-related activity flows between HVC and RA in a strictly feedforward manner is a central component of all models of song production. In contrast to this prevailing view of song motor circuit organization, we show that RA sends a reciprocal projection directly to HVC. Lentiviral labeling of RA PN axons and transgene tagging of RA PN synaptic terminals reveal a direct projection from RA to HVC. Retrograde tracing from HVC demonstrates that this projection originates exclusively from neurons in dorsocaudal regions of RA. Using dual retrograde tracer injections, we further show that many of these RA(HVC) neurons also innervate the brainstem nucleus retroambigualis, which is premotor to expiratory motoneurons, thereby identifying a population of RA PNs positioned to coordinate activity at higher and lower levels of the song motor circuit. In combination, our findings identify a previously unknown pathway that may enable a subset of RA neurons to provide song-related signals to the respiratory brainstem but also transmit a copy of this information to song patterning networks in HVC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843410PMC
http://dx.doi.org/10.1523/JNEUROSCI.0177-08.2008DOI Listing

Publication Analysis

Top Keywords

song motor
12
motor circuit
12
respiratory brainstem
8
innervate brainstem
8
hvc
7
song
6
brainstem
5
telencephalic neurons
4
neurons monosynaptically
4
monosynaptically link
4

Similar Publications

Dysfunctional large-scale brain networks in drug-naïve depersonalization-derealization disorder patients.

BMC Psychiatry

January 2025

Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.

Background: Depersonalization-Derealization Disorder (DPRD) presents challenges in understanding its neurobiological underpinnings. Several neuroimaging studies have revealed altered brain function and structure in DPRD. However, the knowledge about large-scale dysfunctional brain networks in DPRD remains unknown.

View Article and Find Full Text PDF

Neurobiological mechanism of music improving gait disorder in patients with Parkinson's disease: a mini review.

Front Neurol

January 2025

Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China.

Walking ability is essential for human survival and health. Its basic rhythm is mainly generated by the central pattern generator of the spinal cord. The rhythmic stimulation of music to the auditory center affects the cerebral cortex and other higher nerve centers, and acts on the central pattern generator.

View Article and Find Full Text PDF

The accurate and reliable performance of learned vocalizations (e.g., speech and birdsong) modulates the efficacy of communication in humans and songbirds.

View Article and Find Full Text PDF

This is an outline for a podcast. Parkinson's Disease (PD) is a progressive neurodegenerative disease in which there is increasing loss of dopamine neurones from the basal ganglia (Simon et al. Clin Geriatr Med.

View Article and Find Full Text PDF

Many theories of time perception propose the existence of an internal pacemaker, and studies across behavioral, physiological, and neuroscience fields have explored this concept. Specifically, Spontaneous Motor Tempo (SMT), the most comfortable and natural tapping tempo for each individual, is thought to reflect this internal pacemaker's tempo. Changes in heart rate are also linked to time estimation, while Individual Alpha Frequency (IAF), the peak in the alpha range (8-13 Hz) observed in EEG, is reported to reflect the brain's temporal processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!