Reactive oxygen and nitrogen species (ROS and RNS) are known to contribute as pathogenic factors to the development of chronic progressive diseases at various stages. The present review discusses the role of oxidative stress in chemically induced cancer development and progression. Reactive species are capable of inducing DNA damage that eventually may contribute to cell transformation and tumor initiation. ROS and RNS are also associated with tumor promotion and progression. Both endogenous processes and redox-cycling of xenobiotic compounds have been shown to result in oxidative DNA damage. In addition, several exocyclic DNA adducts represent secondary DNA damage caused by products of lipid peroxidation in the course of oxidative cellular stress. Due to their intrinsic ability to catalyze redox reactions, transition metals, and quinones from various classes of xenobiotics or endogenous compounds are important mediators of oxidative stress and thus likely of being involved in DNA damage, lipid peroxidation, cell transformation, and tumor development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2008.02.035DOI Listing

Publication Analysis

Top Keywords

dna damage
16
reactive species
8
ros rns
8
oxidative stress
8
cell transformation
8
transformation tumor
8
lipid peroxidation
8
dna
5
species cell
4
cell damaging
4

Similar Publications

Cardiac Regeneration in Adult Zebrafish: A Review of Signaling and Metabolic Coordination.

Curr Cardiol Rep

January 2025

Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.

Purpose Of Review: This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration.

Recent Findings: Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

The Effect of Cholesterol-Loaded Cyclodextrin and Resveratrol Compounds on Post-Thawing Quality of Ram Semen.

Vet Med Sci

January 2025

Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, İstanbul University-Cerrahpasa, Avcilar, İstanbul, Turkey.

Ram sperm are more vulnerable to freezing than those of most other farm animals. During sperm freezing, the cell membrane loses some of its cholesterol, which regulates signalling mechanisms and prevents premature capacitation. Resveratrol (RES) increases the fluidity of the cell membrane, which becomes peroxidized during freezing and reduces free radicals.

View Article and Find Full Text PDF

Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl hexanoyl chitosan (CHC) nanodroplets decorated with perfluorohexane (PFH) and superparamagnetic iron oxide (SPIO) nanodroplets (SPIO@PFH-CHC), was developed and investigated.

View Article and Find Full Text PDF

Minichromosome Maintenance Proteins: From DNA Replication to the DNA Damage Response.

Cells

December 2024

Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA.

The DNA replication machinery is highly conserved from bacteria to eukaryotic cells. Faithful DNA replication is vital for cells to transmit accurate genetic information to the next generation. However, both internal and external DNA damages threaten the intricate DNA replication process, leading to the activation of the DNA damage response (DDR) system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!