Background: Guidelines published by the Food and Drug Administration and Center for Human Medicinal Products describe the need to assess immunotoxic effects in nonclinical studies that evaluate drug toxicity, including the use of immunophenotyping to measure immunotoxicity. We are not aware of previous studies, however, that have validated methods for immunophenotyping peripheral blood lymphocyte subsets in whole blood samples from cynomolgus monkeys.

Objective: The purpose of this study was to optimize and validate a flow cytometric assay for immunophenotyping lymphocytes in the peripheral blood of cynomolgus monkeys.

Methods: A series of prevalidation experiments were done to determine optimal reagents, volumes, timing, and other procedural details of the flow cytometric assay. Using the optimized method, we then determined precision, interindividual variation, laboratory-to-laboratory variability, and sample stability. Stabilized human blood was used as a positive control for staining, processing, and analysis. The percentage and number of pan-T cells (CD3+), T-helper cells (CD3+4+), T cytotoxic/suppressor cells (CD3+8+), natural killer cells (CD3-16+), and B-cells (CD3-20+) were determined in 146 male and 140 female, clinically healthy monkeys and reference intervals were calculated.

Results: By doing 4-color staining with a lyse-wash method, intra- and interassay precision were <5% for all lymphocyte subsets. Variability between technicians and laboratories was minimal (CVs<3%). Samples were stable for up to 24 hours after staining and fixing.

Conclusions: The validated method is extremely robust and can be performed under good laboratory practice conditions to support nonclinical studies. Reference intervals for lymphocyte subsets were similar to those previously reported.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1939-165X.2008.00014.xDOI Listing

Publication Analysis

Top Keywords

flow cytometric
12
peripheral blood
12
immunophenotyping peripheral
8
cytometric assay
8
blood
5
optimization validation
4
validation flow
4
cytometric method
4
immunophenotyping
4
method immunophenotyping
4

Similar Publications

Androgen receptor (AR) signaling is a target in prostate cancer therapy and can be treated with non-steroidal anti-androgens (NSAA) including enzalutamide, and apalutamide for patients with advanced disease. Metastatic castration-resistant prostate cancer (mCPRC) develop resistance becomes refractory to therapy limiting patient overall survival. Darolutamide is a novel next-generation androgen receptor-signaling inhibitor that is FDA approved for non-metastatic castration resistant prostate cancer (nmCRPC).

View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.

View Article and Find Full Text PDF

CD8+ and CD8- NK Cells and Immune Checkpoint Networks in Peripheral Blood During Healthy Pregnancy.

Int J Mol Sci

January 2025

Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary.

Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications.

View Article and Find Full Text PDF

Flow cytometric (FC) immunophenotyping and T-cell receptor (TCR) gene rearrangement studies are essential ancillary methods for the characterisation of T-cell lymphomas. Traditional manual gating and polymerase chain reaction (PCR)-based analyses can be labour-intensive, operator-dependent, and have limitations in terms of sensitivity and specificity. The objective of our study was to investigate the efficacy of the Phenograph and t-SNE algorithms together with an antibody specific for the TCR β-chain constant region 1 (TRBC1) to identify monoclonal T-cell populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!