Mesenchymal stem cells (MSCs) are multipotent cells capable of developing along the chondrogenic, osteogenic and adipogenic lineages. As such, they have received interest as a potential cell source for tissue engineering strategies. Cartilage is an avascular tissue and thus resides in a microenvironment with reduced oxygen tension. The aim of this study was to examine the effect of a low oxygen environment on MSC differentiation along the chondrogenic route. In MSCs exposed to chondrogenic growth factors, transforming growth factor-beta and dexamethasone, in a hypoxic environment (2% oxygen), the induction of collagen II expression and proteoglygan deposition was significantly greater than that observed when cells were exposed to the chondrogenic growth factors under normoxic (20% oxygen) conditions. The transcription factor, hypoxia-inducible factor-1alpha (HIF-1alpha), is a crucial mediator of the cellular response to hypoxia. Following exposure of MSCs to hypoxia (2% oxygen), HIF-1alpha translocated from the cytosol to the nucleus and bound to its target DNA consensus sequence. Similarly, hypoxia evoked an increase in phosphorylation of both AKT and p38 mitogen activated protein kinase, upstream of HIF-1alpha activation. Furthermore, the PI3 kinase/AKT inhibitor, LY294002, and p38 inhibitor, SB 203580, prevented the hypoxia-mediated stabilisation of HIF-1alpha. To assess the role of HIF-1alpha in the hypoxia-induced increase in chondrogenesis, we employed an siRNA knockdown approach. In cells exposed to HIF-1alpha siRNA, the hypoxia-induced enhancement of chondrogenesis, as evidenced by upregulation of collagen II, sox-9 and proteoglycan deposition, was absent. This provides evidence for HIF-1alpha being a key mediator of the beneficial effect of a low oxygen environment on chondrogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.21446DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
8
stem cells
8
hif-1alpha
8
low oxygen
8
oxygen environment
8
exposed chondrogenic
8
chondrogenic growth
8
growth factors
8
cells exposed
8
oxygen
6

Similar Publications

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Exosomes as promising frontier approaches in future cancer therapy.

World J Gastrointest Oncol

January 2025

Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.

In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.

View Article and Find Full Text PDF

Human Umbilical Cord-Mesenchymal Stem Cells Combined With Low Dosage Nintedanib Rather Than Using Alone Mitigates Pulmonary Fibrosis in Mice.

Stem Cells Int

January 2025

Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.

Pulmonary fibrosis (PF) is a lethal pathological change of fibrotic interstitial lung diseases (ILDs) with abundant fibroblasts proliferation after severely or continually alveolar epithelial cells (AECs) injury. Barely therapies are helpful for PF. Here we use bleomycin intratracheally injection to model PF with or without human umbilical cord-mesenchymal stem cells (hUC-MSCs) and/or nintedanib intervention.

View Article and Find Full Text PDF

Revisiting the unobtrusive role of exogenous stem cells beyond neural circuits replacement in spinal cord injury repair.

Theranostics

January 2025

Department of biochemistry and molecular biology, College of Life Sciences, Central South University, Changsha, 410078, Hunan, China.

Stem cell transplantation is a promising strategy to establish neural relays in situ for spinal cord injury (SCI) repair. Recent research has reported short-term survival of exogenous cells, irrespective of immunosuppressive drugs (ISD), results in similar function recovery, though the mechanisms remain unclear. This study aims to validate this short-term repair effect and the potential mechanisms in large animals.

View Article and Find Full Text PDF

Background: At present, the treatment for allergic rhinitis (AR) is only limited to symptom relief, and AR is not able be cured. It is important to find new therapeutic regimens for AR.

Objective: To explore the effect of adipose mesenchymal stem cell-derived exosomes (AMSC-exos) on AR in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!