Correlations between alterations in length-dependent Ca2+ activation of cardiac myofilaments and the end-systolic pressure-volume relation.

J Muscle Res Cell Motil

Department of Medicine, Section of Cardiology, Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street (M/C 715), Chicago, IL 60612, USA.

Published: July 2008

We have tested the hypothesis that alterations in length dependent activation (LDA) of cardiac myofilaments represent an important regulatory mechanism affecting the Frank-Starling mechanism as determined by the slope (E(es)) of the relation between left ventricular (LV) volume and end-systolic pressure. We employed a transgenic (TG) mouse model in which the cardiac isoform of TnI (cTnI) has been completely replaced with slow skeletal TnI (ssTnI), the embryonic/neonatal isoform in the heart. Compared to non-transgenic (NTG) controls, myofilaments from TG-ssTnI hearts demonstrate an increase in Ca(2+) sensitivity and a substantially blunted LDA that is unaffected by PKA-dependent phosphorylation. We measured in situ LV pressure and volume relations during basal conditions and isoproterenol (ISO) stimulation. In the basal state in TG-ssTnI hearts there was significant increase in end-systolic pressure and slight decrease in heart rate. ISO stimulation resulted in a significant increase in heart rate, ejection fraction, maximum dP/dt, preload-recruitable stroke work, maximum dP/dt versus end diastolic volume and cardiac output in both groups. During basal conditions there was no difference in the E(es) relation between NTG and TG-ssTnI groups. However, during ISO stimulation the E(es) relation was significantly different between NTG and TG-ssTnI groups. Our study provides the first direct evidence that enhancement in differences in LDA between cardiac myofilaments from NTG and TG-ssTnI hearts induced by post-translational modifications of sarcomeric proteins are reflected in the in situ beating heart by a different change in E(es). Thus, changes in LDA should be considered in interpreting results from in situ experiments on inotropic effects associated with physiological and patho-physiological states of the heart.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10974-008-9136-yDOI Listing

Publication Analysis

Top Keywords

cardiac myofilaments
12
ees relation
12
tg-sstni hearts
12
iso stimulation
12
ntg tg-sstni
12
lda cardiac
8
end-systolic pressure
8
basal conditions
8
heart rate
8
maximum dp/dt
8

Similar Publications

Background: Pulmonary hypertension (PH) often leads to right ventricle (RV) failure, a significant cause of morbidity and mortality. Despite advancements in PH management, progression to RV maladaptation and subsequent failure remain a clinical challenge. This study explored the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on RV function in a rat model of PH, hypothesizing that it improves RV function by inhibiting G protein-coupled receptor kinase 2 (GRK2) and altering myofilament protein phosphorylation.

View Article and Find Full Text PDF

Discovery of Titin and Its Role in Heart Function and Disease.

Circ Res

January 2025

Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.).

This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing.

View Article and Find Full Text PDF
Article Synopsis
  • Cirrhotic cardiomyopathy is characterized by both systolic and diastolic dysfunction in patients with cirrhosis, resulting from abnormalities in heart muscle cells (cardiomyocytes) without any underlying heart disease.
  • Changes at the cellular level include altered membrane fluidity and dysfunctional receptors (like beta-adrenergic), as well as issues with calcium and ion transport processes, impacting overall heart function.
  • The heart in cirrhotic patients also undergoes fibrotic changes similar to those in the liver, leading to stiffness and further dysfunction, compounded by excessive cell death of cardiomyocytes.
View Article and Find Full Text PDF

Cardio-metabolic and cytoskeletal proteomic signatures differentiate stress hypersensitivity in dystrophin-deficient mdx mice.

J Proteomics

February 2025

School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand. Electronic address:

Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) is a major public health challenge, affecting millions worldwide and placing a significant burden on healthcare systems due to high hospitalization rates and limited treatment options. HFpEF is characterized by impaired cardiac relaxation, or diastolic dysfunction. However, there are no therapies that directly treat the primary feature of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!