We studied the effects of Na(+) influx on large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels in cultured human umbilical vein endothelial cells (HUVECs) by means of patch clamp and SBFI microfluorescence measurements. In current-clamped HUVECs, extracellular Na(+) replacement by NMDG(+) or mannitol hyperpolarized cells. In voltage-clamped HUVECs, changing membrane potential from 0 mV to negative potentials increased intracellular Na(+) concentration ([Na(+)](i)) and vice versa. In addition, extracellular Na(+) depletion decreased [Na(+)](i). In voltage-clamped cells, BK(Ca) currents were markedly increased by extracellular Na(+) depletion. In inside-out patches, increasing [Na(+)](i) from 0 to 20 or 40 mM reduced single channel conductance but not open probability (NPo) of BK(Ca) channels and decreasing intracellular K(+) concentration ([K(+)](i)) gradually from 140 to 70 mM reduced both single channel conductance and NPo. Furthermore, increasing [Na(+)](i) gradually from 0 to 70 mM, by replacing K(+), markedly reduced single channel conductance and NPo. The Na(+)-Ca(2+) exchange blocker Ni(2+) or KB-R7943 decreased [Na(+)](i) and increased BK(Ca) currents simultaneously, and the Na(+) ionophore monensin completely inhibited BK(Ca) currents. BK(Ca) currents were significantly augmented by increasing extracellular K(+) concentration ([K(+)](o)) from 6 to 12 mM and significantly reduced by decreasing [K(+)](o) from 12 or 6 to 0 mM or applying the Na(+)-K(+) pump inhibitor ouabain. These results suggest that intracellular Na(+) inhibit single channel conductance of BK(Ca) channels and that intracellular K(+) increases single channel conductance and NPo.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-008-0490-9DOI Listing

Publication Analysis

Top Keywords

single channel
20
channel conductance
20
bkca currents
16
intracellular na+
12
bkca channels
12
extracellular na+
12
reduced single
12
conductance npo
12
human umbilical
8
umbilical vein
8

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Gain-of-function variants in the voltage-gated sodium channel Nav1.7, encoded by the SCN9A gene, have previously been identified in patients with erythromelalgia, a clinical diagnosis defined by intermittent attacks of painful, hot, swollen, and red skin, predominantly involving the hands and feet. Symptoms are induced or aggravated by warming and relieved by cooling.

View Article and Find Full Text PDF

Introduction: Attention classification based on EEG signals is crucial for brain-computer interface (BCI) applications. However, noise interference and real-time signal fluctuations hinder accuracy, especially in portable single-channel devices. This study proposes a robust Kalman filtering method combined with a norm-constrained extreme learning machine (ELM) to address these challenges.

View Article and Find Full Text PDF

This study aimed to develop a real-time, noninvasive hyperkalemia monitoring system for dialysis patients with chronic kidney disease. Hyperkalemia, common in dialysis patients, can lead to life-threatening arrhythmias or sudden death if untreated. Therefore, real-time monitoring of hyperkalemia in this population is crucial.

View Article and Find Full Text PDF

Introduction: Clean intermittent catheterization (CIC) has significant advantages over indwelling catheters. To facilitate CIC, a continent catheterizable channel (CCC) to the bladder is required in some cases. The Mitrofanoff appendicovesicostomy (APV) is considered the gold standard for pediatric CCC creation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!