Antisense oligonucleotides (AONs) mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a "window of analysis" that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered "engaged" if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency) of 94% of 176 previously reported AONs. Four novel insights are inferred: (1) the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2) engaged nucleotides at 3' or 5' ends of the target site attenuate AON performance more than at other sites; (3) the performance of longer AONs is less attenuated by engaged nucleotides at 3' or 5' ends of the target site compared to shorter AONs; (4) engaged nucleotides at 3' end of a short target site attenuates AON efficiency more than at 5' end.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267000 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001844 | PLOS |
J Hepatol
January 2025
MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA.
Background & Aims: A common genetic variant (rs738409) encoding isoleucine to methionine at position 148 in the PNPLA3 protein is a determinant of hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver-related mortality. AZD2693 is a liver-targeted antisense oligonucleotide against PNPLA3 mRNA. We evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics in single ascending dose (SAD) and multiple ascending dose (MAD) studies.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC.
View Article and Find Full Text PDFSci Rep
January 2025
The Department of General Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong Province, China.
Mendelian randomization (MR) was employed to investigate the causal relationships between immune cell phenotypes, hyperthyroidism (HD), and potential metabolic mediators. In this study, we acquired 731 immune cell phenotypes from genome-wide association studies (GWAS) (n = 18,622), HD data from the research by Handan Melike Dönertaş et al. (3,731 cases, 480,867 controls), and aggregated statistics of 1,400 blood metabolites from UK Biobank (n = 115,078).
View Article and Find Full Text PDFNat Commun
January 2025
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
The heterodimeric Rab3GAP complex is a guanine nucleotide exchange factor (GEF) for the Rab18 GTPase that regulates lipid droplet metabolism, ER-to-Golgi trafficking, secretion, and autophagy. Why both subunits of Rab3GAP are required for Rab18 GEF activity and the molecular basis of how Rab3GAP engages and activates its cognate substrate are unknown. Here we show that human Rab3GAP is conformationally flexible and potentially autoinhibited by the C-terminal domain of its Rab3GAP2 subunit.
View Article and Find Full Text PDFJ Mol Diagn
January 2025
Department of Laboratory Medicine and Pathology, University of Washington and Seattle Children's Hospital, Seattle, Washington; Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!