We describe a simple method in which the techniques of fringe-projection, holographic, and shearographic interferometry may be readily realized with a commercial beam-splitting cube, a laser source, and a beam expander. With the use of a computer algorithm, moiré fringes may be derived digitally from the fringes that are projected onto a reference surface and onto an object surface. Successful use of the beam-splitting cube for these optical methods is attributed to the refraction of the two split beams that exit from the two adjacent faces of the cube. By careful orientation of the cube, the two refracted light beams will converge and interfere, resulting in the formation of Young's interference fringes for the fringe-projection method. When the hypotenuse of the beam-splitting cube is placed nearly normal to an illuminated object, both the image and the mirror image of the object will be formed behind the cube where a camera is placed. This optical setup thus forms the basis for double-exposure holography when these two images are fully overlapped and for shearography when the images are slightly laterally displaced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.40.005615 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!