An increasing number of neurodegenerative diseases are being linked to mutations in genes encoding proteins required for axonal transport and intracellular trafficking. A mutation in p150(Glued), a component of the cytoplasmic dynein/dynactin microtubule motor complex, results in the human neurodegenerative disease distal spinal and bulbar muscular atrophy (dSBMA). We have developed a transgenic mouse model of dSBMA; these mice exhibit late-onset, slowly progressive muscle weakness but do not have a shortened lifespan, consistent with the human phenotype. Examination of motor neurons from the transgenic model reveals the proliferation of enlarged tertiary lysosomes and lipofuscin granules, indicating significant alterations in the cellular degradative pathway. In addition, we observe deficits in axonal caliber and neuromuscular junction (NMJ) integrity, indicating distal degeneration of motor neurons. However, sciatic nerve ligation studies reveal that inhibition of axonal transport is not evident in this model. Together, these data suggest that mutant p150(Glued) causes neurodegeneration in the absence of significant changes in axonal transport, and therefore other functions of dynein/dynactin, such as trafficking in the degradative pathway and stabilization of the NMJ are likely to be critical in maintaining the health of motor neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584350PMC
http://dx.doi.org/10.1093/hmg/ddn092DOI Listing

Publication Analysis

Top Keywords

motor neurons
16
axonal transport
12
distal degeneration
8
degeneration motor
8
mutation p150glued
8
degradative pathway
8
motor
5
lysosomal proliferation
4
proliferation distal
4
neurons
4

Similar Publications

Cell-type-specific activation of parvalbumin (PV)-expressing neurons in the external globus pallidus (GPe) through optogenetics has shown promise in facilitating long-lasting movement dysfunction recovery in mice with Parkinson's disease. However, its translational potential is hindered by adverse effects stemming from the invasive implantation of optical fibers into the brain. In this study, we have developed a non-invasive optogenetics approach, utilizing focused ultrasound-triggered mechanoluminescent nanotransducers to enable remote photon delivery deep in the brain for genetically targeted neuromodulation.

View Article and Find Full Text PDF

Neurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunc-tional mitochondria trigger problems in various neuronal tasks. Using the neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth.

View Article and Find Full Text PDF

Lymphocyte activation gene 3 (LAG3) is a key receptor involved in the propagation of pathological proteins in Parkinson's disease (PD). This study investigates the role of neuronal LAG3 in mediating the binding, uptake, and propagation of α-synuclein (αSyn) preformed fibrils (PFFs). Using neuronal LAG3 conditional knockout mice and human induced pluripotent stem cells-derived dopaminergic (DA) neurons, we demonstrate that LAG3 expression is critical for pathogenic αSyn propagation.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Factors contributing to this neuronal degeneration include mitochondrial dysfunction, oxidative stress, and neuronal excitotoxicity. Despite extensive research, the exact etiology of PD remains unclear, with both genetic and environmental factors playing significant roles.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!