Iron deficiency (ID) disrupts brain dopamine (DA) and norepinephrine (NE) metabolism including functioning of monoamine transporters and receptors. We employed caudate microdialysis and no net flux (NNF) in post-weaning rats to determine if ID decreased the extraction fraction (E(d)). Five micromolar quinpirole, a dopamine D(2) receptor agonist, resulted in 80% decrease in extracellular DA and 45% higher E(d) in control animals. The D(2) agonist had no effect on E(d) in ID animals despite a reduction in basal DA. DAT mRNA levels were reduced by 58% with ID, while DAT protein in ventral midbrain and caudate and membrane associated DAT were also reduced by ID. Carbidopa/l-DOPA was administered to determine if elevated extracellular DA in ID was due to increased release. The DA response to l-DOPA in ID rats was 50% smaller and delayed, whereas the NE response was threefold higher. The caudate concentration of NE was also elevated in ID. Elevated dopamine-beta-hydroxylase activity in ID provides a tentative explanation for the increased NE response to l-DOPA. These experiments provide new evidence that ID results in altered synthesis and functioning of DAT and perhaps suggests some compensatory changes in NE metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2008.05358.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!