A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced intracellular delivery of quantum dot and adenovirus nanoparticles triggered by acidic pH via surface charge reversal. | LitMetric

Quantum dot (QD) and adenovirus (ADV) nanoparticles were surface-modified with graft copolymers that exhibited a charge reversal behavior under acidic condition. Poly(L-lysine) (PLL) was grafted with multiple biotin-PEG chains (biotin-PEG-PLL graft copolymer), and the remaining primary amine groups in the PLL backbone were postmodified using citraconic anhydride, a pH-sensitive primary amine blocker, to generate carboxylate groups. The surfaces of streptavidin-conjugated QDs were modified with citraconylated biotin-PEG-PLL copolymer, producing net negatively charged QD nanoparticles. Under acidic conditions, citraconylated amide linkages were cleaved, resulting in the recovery of positively charged amine groups with subsequent alteration of surface charge values. Intracellular delivery of QD nanoparticles was greatly enhanced in an acidic pH condition due to the surface charge reversal. The surface of avidin-conjugated adenovirus (ADV-Avi) encoding an exogenous green fluorescent protein (GFP) gene was also modified in the same fashion. The expression extent of GFP was significantly increased at more acidic pH than pH 7.4. This study demonstrates that various nanosized drug carriers, imaging agents, and viruses could be surface-engineered to enhance their cellular uptake specifically at a low pH microenvironment like solid tumor tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc700464mDOI Listing

Publication Analysis

Top Keywords

surface charge
12
charge reversal
12
intracellular delivery
8
quantum dot
8
dot adenovirus
8
acidic condition
8
primary amine
8
amine groups
8
acidic
5
enhanced intracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!