Leber Hereditary Optic Neuropathy (LHON) is a maternally inherited blinding disease caused by missense mutations in the mitochondrial DNA (mtDNA). However, incomplete penetrance and a predominance of male patients presenting with vision loss suggest that modifying factors play an important role in the development of the disease. Evidence from several studies suggests that both nuclear modifier genes and environmental factors may be necessary to trigger the optic neuropathy in individuals harboring an LHON-causing mtDNA mutation. Recently, an optic neuropathy susceptibility locus at Xp21-Xq21 has been reported. In this study, we performed X-chromosomal linkage analysis in a large Brazilian family harboring a homoplasmic G11778A mtDNA mutation on a haplogroup J background. We report the identification of a novel LHON susceptibility locus on chromosome Xq25-27.2, with multipoint non-parametric linkage scores of > 5.00 (P = 0.005) and a maximum two-point non-parametric linkage score of 10.12, (P = 0.003) for marker DXS984 (Xq27.1). These results suggest genetic heterogeneity for X-linked modifiers of LHON.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13816810701867607DOI Listing

Publication Analysis

Top Keywords

optic neuropathy
16
leber hereditary
8
hereditary optic
8
mtdna mutation
8
susceptibility locus
8
non-parametric linkage
8
evidence novel
4
novel x-linked
4
x-linked modifier
4
modifier locus
4

Similar Publications

Herpes zoster Ophthalmicus (HZO) affecting the ophthalmic division (V1) of the trigeminal nerve. HZO may cause extraocular muscle palsies, with the third nerve being the most commonly affected and the fourth nerve the least. The combined involvement of the optic nerve and isolated paralysis of the eye muscle is very rare, with only limited case reports documenting this complication of ocular herpes zoster.

View Article and Find Full Text PDF

Vision loss affects more than 7 million Americans and impacts quality of life, independence, social functioning, and overall health. Common and dangerous conditions causing sudden vision loss include acute angle-closure glaucoma, retinal detachment, retinal artery occlusion, giant cell arteritis, and optic neuritis. Acute angle-closure glaucoma features ocular pain, headache, and nausea; treatment includes pilocarpine eye drops, oral or intravenous acetazolamide, and intravenous mannitol.

View Article and Find Full Text PDF

Conformational Antibodies to Proteolipid Protein-1 and Its Peripheral Isoform DM20 in Patients With CNS Autoimmune Demyelinating Disorders.

Neurol Neuroimmunol Neuroinflamm

March 2025

Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy.

Background And Objectives: Antibodies to proteolipid protein-1 (PLP1-IgG), a major central myelin protein also expressed in the peripheral nervous system (PNS) as the isoform DM20, have been previously identified mostly in patients with multiple sclerosis (MS), with unclear clinical implications. However, most studies relied on nonconformational immunoassays and included few patients with non-MS CNS autoimmune demyelinating disorders (ADDs). We aimed to investigate conformational PLP1-IgG in the whole ADD spectrum.

View Article and Find Full Text PDF

Background: The presence of diffuse brain damage in normal-appearing white matter (NAWM) and gray matter (NAGM) in neuromyelitis optica spectrum disorder (NMOSD) remains controversial. We aimed to address this controversy by applying a multiparametric MRI approach. Additionally, the association between MRI metrics and clinical variables was explored.

View Article and Find Full Text PDF

Traumatic optic neuropathy (TON) is a common cause of irreversible blindness following head injury. TON is characterized by axon damage in the optic nerve followed by retinal ganglion cell death in the days and weeks following injury. At present, no therapeutic or surgical approach has been found to offer any benefit beyond observation alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!