Rotifers of class Bdelloidea are common invertebrate animals with highly unusual characteristics, including apparently obligate asexuality, the ability to resume reproduction after desiccation at any life stage, and a paucity of transposable genetic elements of types not prone to horizontal transmission. We find that bdelloids are also extraordinarily resistant to ionizing radiation (IR). Reproduction of the bdelloids Adineta vaga and Philodina roseola is much more resistant to IR than that of Euchlanis dilatata, a rotifer belonging to the desiccation-intolerant and facultatively sexual class Monogononta, and all other animals for which we have found relevant data. By analogy with the desiccation- and radiation-resistant bacterium Deinococcus radiodurans, we suggest that the extraordinary radiation resistance of bdelloid rotifers is a consequence of their evolutionary adaptation to survive episodes of desiccation encountered in their characteristic habitats and that the damage incurred in such episodes includes DNA breakage that is repaired upon rehydration. Such breakage and repair may have maintained bdelloid chromosomes as colinear pairs and kept the load of transposable genetic elements low and may also have contributed to the success of bdelloid rotifers in avoiding the early extinction suffered by most asexuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278216 | PMC |
http://dx.doi.org/10.1073/pnas.0800966105 | DOI Listing |
PeerJ
December 2024
Animal Systematics and Ecology Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand.
Microscopic animals are often thought to be widely distributed due to their small size and specific adaptations. However, evidences show that bdelloid rotifers in bryophytes exhibit habitat specialization, with species composition varying by microhabitat. This indicates that their distribution is influenced by complex ecological processes, warranting further research, particularly at the microscale.
View Article and Find Full Text PDFA taxonomic study on bdelloid rotifers collected from terrestrial habitats such as mosses and leaf litter at two different locations in Korea resulted in three new species, Habrotrocha changhoi n. sp., H.
View Article and Find Full Text PDFNat Commun
July 2024
Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
Coevolutionary antagonism generates relentless selection that can favour genetic exchange, including transfer of antibiotic synthesis and resistance genes among bacteria, and sexual recombination of disease resistance alleles in eukaryotes. We report an unusual link between biological conflict and DNA transfer in bdelloid rotifers, microscopic animals whose genomes show elevated levels of horizontal gene transfer from non-metazoan taxa. When rotifers were challenged with a fungal pathogen, horizontally acquired genes were over twice as likely to be upregulated as other genes - a stronger enrichment than observed for abiotic stressors.
View Article and Find Full Text PDFMov Ecol
July 2024
Consiglio Nazionale Delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Corso Tonolli 50, 28922, Verbania Pallanza, Italy.
Background: Movement is a defining aspect of animals, but it is rarely studied using quantitative methods in microscopic invertebrates. Bdelloid rotifers are a cosmopolitan class of aquatic invertebrates of great scientific interest because of their ability to survive in very harsh environment and also because they represent a rare example of an ancient lineage that only includes asexually reproducing species. In this class, Adineta ricciae has become a model species as it is unusually easy to culture.
View Article and Find Full Text PDFBiol Lett
June 2024
Department of Terrestrial Biodiversity, Norwegian Institute for Nature Research, Trondheim, Norway.
Historical climate data indicate that the Earth has passed through multiple geological periods with much warmer-than-present climates, including epochs of the Miocene (23-5.3 mya BP) with temperatures 3-4°C above present, and more recent interglacial stages of the Quaternary, for example, Marine Isotope Stage 11c (approx. 425-395 ka BP) and Middle Holocene thermal maximum (7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!