Emerging evidence suggests that lysophosphatidic acid (LPA) is a physiological regulator of cyclooxygenase-2 (Cox-2) expression. Herein we used ovarian cancer cells as a model to investigate the molecular mechanisms that link the LPA G protein-coupled receptors (GPCRs) to Cox-2 expression. LPA stimulated Cox-2 expression and release of prostaglandins though the LPA(1), LPA(2), and LPA(5) receptors. The effect of LPA involves both transcriptional activation and post-transcriptional enhancement of Cox-2 mRNA stability. The consensus sites for C/EBP in the Cox-2 promoter were essential for transcriptional activation of Cox-2 by LPA. The NF-kappaB and AP-1 transcription factors commonly involved in inducible Cox-2 expression were dispensable. Dominant-negative C/EPBbeta inhibited LPA activation of the Cox-2 promoter and expression. Furthermore, LPA stimulated C/EBPbeta phosphorylation and activity through a novel mechanism integrating GPCR signals and a permissive activity from a receptor tyrosine kinase (RTK). This role of RTK was not consistent with LPA activation of C/EBP through transactivation of RTK, as full activation of RTKs with their own agonists only weakly stimulated C/EBP. In addition to the transcriptional activation, the RNA stabilization protein HuR bound to and protected Cox-2 mRNA in LPA-stimulated cells, indicating an active role for HuR in sustaining Cox-2 induction during physiological responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493458PMC
http://dx.doi.org/10.1096/fj.07-101428DOI Listing

Publication Analysis

Top Keywords

cox-2 expression
16
transcriptional activation
12
cox-2
10
expression ovarian
8
ovarian cancer
8
cancer cells
8
lpa
8
expression lpa
8
lpa stimulated
8
cox-2 mrna
8

Similar Publications

Background/purpose: Studies have demonstrated a relation between hypercholesterolemia and development of apical periodontitis (AP), but the underlying mechanism is uncertain. 27-hydroxycholesterol (27HC), produced by cytochrome P450 27A1 (CYP27A1)-catalyzed hydroxylation of cholesterol, is known to possess pro-inflammatory activity. Felodipine is an anti-hypertensive agent able to inhibit CYP27A1.

View Article and Find Full Text PDF

Background: The non-saponin (NS) fraction is an important active component of with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated.

Purpose: and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

View Article and Find Full Text PDF

Ethanol extract of lymphanax with gypenoside 17 and ginsenoside Re exerts anti-inflammatory properties by targeting the AKT/NF-κB pathway.

J Ginseng Res

January 2025

Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea.

Background: Ginseng is processed into several types such as white ginseng, red ginseng, and black ginseng, according to the processing methods such as drying, steaming, and heating. These processing conditions can change the portion of the useful ingredients. Recently, new processing method was established to develop 'lymphanax', an aged fresh white ginseng prepared under anaerobic condition.

View Article and Find Full Text PDF

Arrhythmia is a common and serious global health problem, contributing to cardiovascular morbidity and mortality. The cardiac muscle is susceptible to ischemia-reperfusion (I/R) injury, which can lead to fatal arrhythmias during open-heart surgery. We investigated the potential prophylactic effect of angiotensin 1-7 (Ang 1-7) using an in vivo rat model of I/R injury and examined the underlying mechanisms.

View Article and Find Full Text PDF

Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout.

Arch Biochem Biophys

January 2025

Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:

Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!