Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids.

J Exp Med

Immunology Research Group, Department of Physiology and Biophysics, Institute of Infection, Immunity and Inflammation, University of Calgary, Alberta T2N 4N1, Canada.

Published: April 2008

Adhesion molecules known to be important for neutrophil recruitment in many other organs are not involved in recruitment of neutrophils into the sinusoids of the liver. The prevailing view is that neutrophils become physically trapped in inflamed liver sinusoids. In this study, we used a biopanning approach to identify hyaluronan (HA) as disproportionately expressed in the liver versus other organs under both basal and inflammatory conditions. Spinning disk intravital microscopy revealed that constitutive HA expression was restricted to liver sinusoids. Blocking CD44-HA interactions reduced neutrophil adhesion in the sinusoids of endotoxemic mice, with no effect on rolling or adhesion in postsinusoidal venules. Neutrophil but not endothelial CD44 was required for adhesion in sinusoids, yet neutrophil CD44 avidity for HA did not increase significantly in endotoxemia. Instead, activation of CD44-HA engagement via qualitative modification of HA was demonstrated by a dramatic induction of serum-derived HA-associated protein in sinusoids in response to lipopolysaccharide (LPS). LPS-induced hepatic injury was significantly reduced by blocking CD44-HA interactions. Administration of anti-CD44 antibody 4 hours after LPS rapidly detached adherent neutrophils in sinusoids and improved sinusoidal perfusion in endotoxemic mice, revealing CD44 as a potential therapeutic target in systemic inflammatory responses involving the liver.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2292228PMC
http://dx.doi.org/10.1084/jem.20071765DOI Listing

Publication Analysis

Top Keywords

liver sinusoids
12
inflamed liver
8
sinusoids
8
neutrophils sinusoids
8
blocking cd44-ha
8
cd44-ha interactions
8
adhesion sinusoids
8
endotoxemic mice
8
liver
6
neutrophil
5

Similar Publications

TERT de novo mutation-associated dyskeratosis congenita and porto-sinusoidal vascular disease: a case report.

J Med Case Rep

January 2025

Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, 130021, China.

Background: Dyskeratosis congenita is a rare genetic disease due to telomere biology disorder and characterized by heterogeneous clinical manifestations and severe complications. "Porto-sinusoidal vascular disease" has been recently proposed, according to new diagnostic criteria, to replace the term "idiopathic non-cirrhotic portal hypertension." TERT plays an important role in telomeric DNA repair and replication.

View Article and Find Full Text PDF

Cystic degeneration (CD) in the liver is a cyst-like lesion composed of one or more pseudocysts lacking lining cells, occurring spontaneously in rats older than 12 months, with a male predilection. In this study, 32 CDs were identified in 23 out of 104 non-treated, control male Sprague-Dawley rats from two combined chronic toxicity and carcinogenicity studies with agrochemicals. They were examined histologically, histochemically, and immunohistochemically to assess the pathogenesis and pathological significance of CD, focusing on pseudocapillarization in aged rat liver.

View Article and Find Full Text PDF

Liver fibrosis is a prevalent liver disease associated with significant morbidity, and the activation of hepatic stellate cells (HSCs) serves as the primary causative factor driving the progression of liver fibrosis. However, capillarization of liver sinusoidal endothelial cells (LSECs) induced by hepatic fibrosis can reduce nitric oxide (NO) production and bioavailability, which consequently loses the ability to retain HSCs dormant, leading to amplified HSCs activation. Herein, an elaborate micelle (VN-M@BN) loaded with benazepril (BN) was constructed by self-assembly of polymeric NO donor, aiming for the controlled release of NO in liver fibrosis lesions thereby impeding the progression of liver fibrosis.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is traditionally associated with hepatic parenchymal diseases, such as acute liver failure and cirrhosis. Its prevalence in non-cirrhotic portal hypertension (NCPH) patients, extrahepatic portal vein obstruction (EHPVO), and non-cirrhotic portal fibrosis (NCPF) is less well described. HE in NCPH allows one to study the effect of portosystemic shunting and ammonia without significant hepatic parenchymal injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!