APOBEC3G (A3G) restricts HIV-1 infection by catalyzing processive C --> U deaminations on single-stranded DNA (ssDNA) with marked 3' --> 5' deamination polarity. Here we show that A3G exists in oligomeric states whose composition is dictated primarily by interactions with DNA, with salt playing an important, yet secondary, role. Directional deaminations correlate with the presence of dimers, tetramers, and larger oligomers observed by atomic force microscopy, and random deaminations appear to correlate mainly with monomers. The presence of a 30-nt weakly deaminated "dead" zone located at the 3'-ssDNA end implies the presence of a preferred asymmetric direction for A3G catalysis. Single turnover reaction rates reveal a salt-dependent inhibition of C deamination toward the 3'-ssDNA region, offering a molecular basis underlying A3G deamination polarity. Presteady state analysis demonstrates rapid diffusion-limited A3G-ssDNA binding, a slower salt-dependent conformational change, possibly indicative of DNA wrapping, and long (5-15 min) protein-DNA complex lifetimes. We suggest that diverse A3G oligomerization modes contribute to the human immunodeficiency virus, type 1, proviral DNA mutational bias.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2376223 | PMC |
http://dx.doi.org/10.1074/jbc.M801004200 | DOI Listing |
ACS Chem Biol
December 2024
Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States.
The APOBEC3 family of polynucleotide cytidine deaminases has diverse roles as viral restriction factors and oncogenic mutators. These enzymes convert cytidine to uridine in single-stranded (ss)DNA, inducing genomic mutations that promote drug resistance and tumor heterogeneity. Of the seven human APOBEC3 members, APOBEC3A (A3A) and APOBEC3B (A3B) are most implicated in driving pro-tumorigenic mutations.
View Article and Find Full Text PDFACS Omega
December 2024
Ionis Pharmaceuticals, Carlsbad, California 92010, United States.
Novel polar cysteine analogues have been synthesized for the derivatization of oligonucleotide depurination impurities that may be formed under acidic conditions. Depurination impurities belong to a group that includes deamination and phosphate diester impurities, which are similar in chemical structure to each other and the parent oligonucleotide, and thus coelute by most chromatographic separation methods. The polar cysteine analogues react with depurination impurities and enable their complete separation from the parent oligonucleotide by weak anion exchange (WAX) chromatography.
View Article and Find Full Text PDFChemistry
August 2024
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou Fujian, 350007, China.
A hydrophobic Ni-PTFE modified electrode has been prepared by constant current and cathodic electroplating with a nickel sheet as substrate in a PTFE suspension. Then the Ni-PTFE modified electrode was used for electroreduction from aromatic amide to diarylimide. The electrochemical characterizations such as cyclic voltammogram, EIS, polarization curves, and electrode stability have been carried out by electrochemical workstation.
View Article and Find Full Text PDFMicrob Physiol
April 2024
General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
The denitrifying betaproteobacterium Aromatoleum aromaticum EbN1T is a facultative anaerobic degradation specialist and belongs to the environmental bacteria studied best on the proteogenomic level. This review summarizes the current state of knowledge about the anaerobic and aerobic degradation (to CO2) of 47 organic growth substrates (23 aromatic, 21 aliphatic, and 3 amino acids) as well as the modes of respiratory energy conservation (denitrification vs. O2-respiration).
View Article and Find Full Text PDFFront Immunol
July 2022
Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy.
Deficiency of Adenosine deaminase 2 (DADA2) is a monogenic autoinflammatory disorder presenting with a broad spectrum of clinical manifestations, including immunodeficiency, vasculopathy and hematologic disease. Biallelic mutations in ADA2 gene have been associated with a decreased ADA2 activity, leading to reduction in deamination of adenosine and deoxyadenosine into inosine and deoxyinosine and subsequent accumulation of extracellular adenosine. In the early reports, the pivotal role of innate immunity in DADA2 pathogenic mechanism has been underlined, showing a skewed polarization from the M2 macrophage subtype to the proinflammatory M1 subtype, with an increased production of inflammatory cytokines such as TNF-α.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!