In a previous study, the early stages of self-assembly in nanophase materials were explored by coupling a kinetic mean-field analysis with a lattice-based stochastic theory [J. J. Kozak et al., J. Chem. Phys. 126, 154701 (2007)]. Recent experimental results on the postnucleation stages of zeolite assembly and protein crystallite formation have suggested a new study, presented here, in which the docking of a platelet on the existing surface of a structured crystallite is similarly investigated. A model is designed which allows the quantification of factors affecting docking efficiency; principal among these is the structure of the template itself, which here is assumed to be either unstructured or bifurcated into terraces and edges/ledges. Going beyond our earlier study (in which diffusion was restricted to d=2 dimensions), the diffusion space here is enlarged to consider both d=2 and d=3 dimensional flows. By expanding the external diffusion space systematically, we are able to document the consequences (as regards docking efficiency) of diffusive flows in the near neighborhood of a developing crystallite versus surface-only processes. Particularly in regimes where the barriers to surface diffusion are high, and/or the probability of desorption significant, we find that d=3 dimensional processes (leading to a "direct hit") can compete kinetically with surface-only mediated processes. Although the crystallite model studied here is simple, it can be diffeomorphically distorted into a manifold of possible geometries; in analogy with the classical theory of corresponding states, we argue that the familial relationship among these structures suggests that the generic results obtained provide a qualitatively correct description of the kinetics of docking on structured surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2876271 | DOI Listing |
Arch Microbiol
January 2025
Clinical Microbiology and PK-PD Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, J&K, 190005, India.
Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.
View Article and Find Full Text PDFSci Rep
January 2025
Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P. O. Box 33, Nizwa, Oman.
Diabetes mellitus, particularly type 2 diabetes, is a growing global health challenge characterized by chronic hyperglycemia due to insulin resistance. One therapeutic approach to managing this condition is the inhibition of α-glucosidase, an enzyme involved in carbohydrate digestion, to reduce postprandial blood glucose levels. In this study, a series of thiosemicarbazide-linked quinoline-piperazine derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity, to identify new agents for type 2 diabetes management.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, U.K.
Inhibition of the mitochondrial deubiquitinating (DUB) enzyme USP30 is neuroprotective and presents therapeutic opportunities for the treatment of idiopathic Parkinson's disease and mitophagy-related disorders. We integrated structural and quantitative proteomics with biochemical assays to decipher the mode of action of covalent USP30 inhibition by a small-molecule containing a cyanopyrrolidine reactive group, . The inhibitor demonstrated high potency and selectivity for endogenous USP30 in neuroblastoma cells.
View Article and Find Full Text PDFInorg Chem Front
January 2025
Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557.
Platinum chemotherapy is part of every second anticancer treatment regimen. However, its application is limited by severe side effects and drug resistance. The combination of platinum-based chemotherapeutics with EGFR inhibitors has shown remarkable synergism in clinical treatment.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand.
Background: Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!