In clinical cases, many orthopaedists have been troubled with bone fragility, such as fractures after devitalization therapy for bone tumour, pathological fractures and metastatic tumours. The aim of this study was to determine whether loss of osteogenic capacity of devitalized autologous bones can be rescued using cultured bone marrow-derived mesenchymal cells. A devitalized bone model was produced from rat femur by irradiation and three groups were prepared: intact bone, irradiated bone and irradiated bone combined with cultured mesenchymal cells. Each bone was transplanted subcutaneously into a syngeneic rat. At 2 or 4 weeks after transplantation, biochemical analyses [alkaline phosphatase (ALP) activity and osteocalcin mRNA expression] and histological measurement were performed. Moreover, we verified the origin of newly formed bone, using the sex-determining region Y (sry) gene as a marker to distinguish between donor and recipient. In both intact bone and irradiated bone with mesenchymal cells, ALP activity and osteocalcin mRNA expression were detected and living osteoblasts together with newly formed bone were clearly seen histologically. Furthermore, analysis of the origin of de novo formed bone indicated that newly formed bone in irradiated bone with mesenchymal cells was derived from cultured bone marrow-derived mesenchymal cells. These results proved that the osteogenic capacity of devitalized autologous bone can be rescued using tissue-engineering techniques. This procedure should contribute to various clinical treatments, such as local metastatic tumours, pathological fracture after devitalization therapy and reconstruction after wide-margin tumour resection. The benefits would be applicable to all types of devitalized bone.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.67DOI Listing

Publication Analysis

Top Keywords

mesenchymal cells
24
bone
20
bone irradiated
16
irradiated bone
16
formed bone
16
bone marrow-derived
12
marrow-derived mesenchymal
12
osteogenic capacity
12
capacity devitalized
12
devitalized autologous
12

Similar Publications

MAL2 (myelin and lymphocyte protein 2) and rab17 have been identified as hepatocellular carcinoma tumor suppressors. However, little is known how their functions in hepatic polarized protein sorting/trafficking translates into how they function in the epithelial to mesenchymal transition and/or the mesenchymal to epithelial transition in metastases. To investigate this, we expressed MAL2 and rab17 alone or together in hepatoma-derived Clone 9 cells (that lack endogenous MAL2 and rab17).

View Article and Find Full Text PDF

Therapeutic implications and comprehensive insights into cellular senescence and aging in the tumor microenvironment of sarcoma.

Discov Oncol

January 2025

Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.

Sarcoma (SARC), a diverse group of stromal tumors arising from mesenchymal tissues, is often associated with a poor prognosis. Emerging evidence indicates that senescent cells within the tumor microenvironment (TME) significantly contribute to cancer progression and metastasis. Although the influence of senescence on SARC has been partially acknowledged, it has yet to be fully elucidated.

View Article and Find Full Text PDF

Compared to fluorescence, second harmonic generation (SHG) has recently emerged as an excellent signal for imaging probes due to its unmatched advantages in terms of no photobleaching, no phototoxicity, no signal saturation, as well as the superior imaging accuracy with excellent avoidance of background noise. Existing SHG probes are constructed from heavy metals and are cellular exogenous, presenting with high cytotoxicity, difficult cellular uptake, and the limitation of non-heritability. We, therefore, initially propose an innovative gene-encoded bioprotein SHG probe derived from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin.

View Article and Find Full Text PDF

Mesenchymal stromal cells-extracellular vesicles: protein corona as a camouflage mechanism?

Extracell Vesicles Circ Nucl Acids

November 2024

Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy.

Mesenchymal stromal cells (MSCs) showed promising potential for regenerative and therapeutic applications for several pathologies and conditions. Their potential is mainly ascribed to the factors and extracellular vesicles (EVs) they release, which are now envisioned as cell-free therapeutics in cutting-edge clinical studies. A main cornerstone is the preferential uptake by target cells and tissues, in contrast to clearance by phagocytic cells or removal from circulation before reaching the final destination.

View Article and Find Full Text PDF

Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!