Donor-substituted 1,1,2,4,4-pentacyanobuta-1,3-dienes and a cyclohexa-2,5-diene-1,4-diylidene-expanded derivative were prepared by a [2 + 2] cycloaddition of tetracyanoethene (TCNE) or 7,7,8,8-tetracyanoquinodimethane (TCNQ) to anilino-substituted cyanoalkynes, followed by retro-electrocyclisation; they feature intense bathochromically-shifted intramolecular charge-transfer bands and undergo their first one-electron reductions at potentials similar to those reported for TCNE and TCNQ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b714731g | DOI Listing |
J Org Chem
September 2024
Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey.
Two distinct families of NLOphores featuring hydrazone donors were synthesized using click-type [2 + 2] cycloaddition retroelectrocyclizations (CA-RE). Despite the limitations in the substrate scope, it was shown for the first time that hydrazone-activated alkynes could undergo reactions with TCNE/TCNQ. The electrochemical, photophysical, and second-order nonlinear optical (NLO) characteristics of the chromophores were analyzed utilizing experimental and computational approaches.
View Article and Find Full Text PDFChemistry
May 2024
Department of Chemistry, University of North Texas, Denton, Texas, 76203-5017, United States.
Unraveling the intriguing aspects of the intramolecular charge transfer (ICT) phenomenon of multi-modular donor-acceptor-based push-pull systems are of paramount importance considering their promising applications, particularly in solar energy harvesting and light-emitting devices. Herein, a series of symmetrical and unsymmetrical donor-acceptor chromophores 1-6, are designed and synthesized by the Corey-Fuchs reaction via Evano's condition followed by [2+2] cycloaddition retroelectrocyclic ring-opening reaction with strong electron acceptors TCNE and TCNQ in good yields (~60-85 %). The photophysical, electrochemical, and computational studies are investigated to explore the effect of incorporation of strong electron acceptors 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) and dicyanoquinodimethane (DCNQ) with phenothiazine (PTZ) donor.
View Article and Find Full Text PDFChemistry
April 2024
Department of Chemistry, IIS (deemed to be University), Jaipur, Rajasthan, 302020.
In this review article, the synthesis, characterization and physico-chemical properties of the organic donor-acceptor complexes are highlighted and a special emphasis has been placed on developing them as semiconducting materials. The electron-rich molecules, i. e.
View Article and Find Full Text PDFInt J Mol Sci
May 2023
ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France.
Three new tetraphenylethene (TPE) push-pull chromophores exhibiting strong intramolecular charge transfer (ICT) are described. They were obtained via [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) click reactions on an electron-rich alkyne-tetrafunctionalized TPE (TPE-alkyne) using both 1,1,2,2-tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F-TCNQ) as electron-deficient alkenes. Only the starting TPE-alkyne displayed significant AIE behavior, whereas for TPE-TCNE, a faint effect was observed, and for TPE-TCNQ and TPE-F-TCNQ, no fluorescence was observed in any conditions.
View Article and Find Full Text PDFNanotechnology
June 2022
School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, People's Republic of China.
Recently, two-dimensional materials are widely concerned because of their novel physical properties. CrGeTe(CGT) has been studied extensively due to its intrinsic ferromagnetism and ferromagnetic order. In this investigation, the electronic and magnetic performances of organic molecules (TCNE, TCNQ and TTF) adsorbed on CGT monolayer were studied based on the first-principles calculations systematically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!