We report examples of the use of a scanning tunable CO(2) laser lidar system in the 9-11-mum region to construct images of vegetation and rocks at ranges as far as 5 km from the instrument. Range information is combined with horizontal and vertical distances to yield an image with three spatial dimensions simultaneous with the classification of target type. Object classification is based on reflectance spectra, which are sufficiently distinct to allow discrimination between several tree species, between trees and scrub vegetation, and between natural and artificial targets. Limitations imposed by laser speckle noise are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.40.004344DOI Listing

Publication Analysis

Top Keywords

9-11-mum region
8
remote mapping
4
mapping vegetation
4
vegetation geological
4
geological features
4
features lidar
4
lidar 9-11-mum
4
region report
4
report examples
4
examples scanning
4

Similar Publications

Per- and polyfluoroalkyl (PFAS) substances are enduring industrial materials. 17β-Hydroxysteroid dehydrogenase isoform 1 (17β-HSD1) is an estrogen metabolizing enzyme, which transforms estrone into estradiol in human placenta and rat ovary. Whether PFAS inhibit 17β-HSD1 and what the structure-activity relationship (SAR) remains unexplored.

View Article and Find Full Text PDF

This paper presents an ultracompact tunable device for power splitting and switching by tuning the Fermi energy level of monolayer patternless graphene underneath a slotted multimode interference (MMI) coupler operating in the mid-infrared, λ = 9-11 μm. By introducing a high-index silicon slot in the central region of the MMI structure, which can significantly shorten the beat length, the proposed device has an approximately 4.5-fold reduction in device length and a two-fold improvement in power transmission compared with conventional MMI couplers without slotting.

View Article and Find Full Text PDF

We report examples of the use of a scanning tunable CO(2) laser lidar system in the 9-11-mum region to construct images of vegetation and rocks at ranges as far as 5 km from the instrument. Range information is combined with horizontal and vertical distances to yield an image with three spatial dimensions simultaneous with the classification of target type. Object classification is based on reflectance spectra, which are sufficiently distinct to allow discrimination between several tree species, between trees and scrub vegetation, and between natural and artificial targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!