HIV fusion is mediated by a conformational transition in which the C-terminal region (HR2) of gp41 interacts with the N-terminal region (HR1) to form a six-helix bundle. Peptides derived from the HR1 form a well-characterized, trimeric coiled-coil bundle in the presence of HR2 peptides, but there is little structural information on the isolated HR1 trimer. Using protein design, we have designed synthetic HR1 peptides that form soluble, thermostable HR1 trimers. In vitro binding of HR2 peptides to the engineered trimer suggests that the design strategy has not significantly impacted the ability to form the six-helix bundle. The peptides have enhanced antiviral activity compared to wild type, with up to 30-fold greater potency against certain viral isolates. In vitro passaging was used to generate HR1-resistant virus and the observed resistance mutations map to the HR2 region of gp41, demonstrating that the peptides block the fusion process by binding to the viral HR2 domain. Interestingly, the activity of the HR2 fusion inhibitor, enfuvirtide (ENF), against these resistant viruses is maintained or improved up to fivefold. The 1.5 A crystal structure of one of these designs has been determined, and we show that the isolated HR1 is very similar to the conformation of the HR1 in the six-helix bundle. These results provide an initial model of the pre-fusogenic state, are attractive starting points for identifying novel fusion inhibitors, and offer new opportunities for developing HIV therapeutics based on HR1 peptides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2271165 | PMC |
http://dx.doi.org/10.1110/ps.073307608 | DOI Listing |
ACS Nano
December 2024
Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
Biochem Biophys Res Commun
December 2024
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China. Electronic address:
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the genus Betacoronavirus (subgenus Sarbecovirus) and shares significant genomic and phylogenetic similarities with severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1). SARS-CoV-2 infection occurs through membrane fusion between the virus and host cell membranes, which is facilitated by the spike glycoprotein subunit 2 (S2). The folding of three heptad-repeat regions 1 (HR1) into a central trimeric core structure, along with the binding of three heptad-repeat regions 2 (HR2) in an antiparallel manner within the groove formed between the HR1 regions, which provides the driving force for membrane fusion.
View Article and Find Full Text PDFbioRxiv
September 2024
Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
Curr Res Microb Sci
July 2024
Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China.
Curr Res Microb Sci
July 2024
Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!