Phylogenetic analysis of the incidence of lux gene horizontal transfer in Vibrionaceae.

J Bacteriol

Department of Ecology and Evolutionary Biology, 830 North University Avenue, University of Michigan, Ann Arbor, MI 48109-1048, USA.

Published: May 2008

Horizontal gene transfer (HGT) is thought to occur frequently in bacteria in nature and to play an important role in bacterial evolution, contributing to the formation of new species. To gain insight into the frequency of HGT in Vibrionaceae and its possible impact on speciation, we assessed the incidence of interspecies transfer of the lux genes (luxCDABEG), which encode proteins involved in luminescence, a distinctive phenotype. Three hundred three luminous strains, most of which were recently isolated from nature and which represent 11 Aliivibrio, Photobacterium, and Vibrio species, were screened for incongruence of phylogenies based on a representative housekeeping gene (gyrB or pyrH) and a representative lux gene (luxA). Strains exhibiting incongruence were then subjected to detailed phylogenetic analysis of horizontal transfer by using multiple housekeeping genes (gyrB, recA, and pyrH) and multiple lux genes (luxCDABEG). In nearly all cases, housekeeping gene and lux gene phylogenies were congruent, and there was no instance in which the lux genes of one luminous species had replaced the lux genes of another luminous species. Therefore, the lux genes are predominantly vertically inherited in Vibrionaceae. The few exceptions to this pattern of congruence were as follows: (i) the lux genes of the only known luminous strain of Vibrio vulnificus, VVL1 (ATCC 43382), were evolutionarily closely related to the lux genes of Vibrio harveyi; (ii) the lux genes of two luminous strains of Vibrio chagasii, 21N-12 and SB-52, were closely related to those of V. harveyi and Vibrio splendidus, respectively; (iii) the lux genes of a luminous strain of Photobacterium damselae, BT-6, were closely related to the lux genes of the lux-rib(2) operon of Photobacterium leiognathi; and (iv) a strain of the luminous bacterium Photobacterium mandapamensis was found to be merodiploid for the lux genes, and the second set of lux genes was closely related to the lux genes of the lux-rib(2) operon of P. leiognathi. In none of these cases of apparent HGT, however, did acquisition of the lux genes correlate with phylogenetic divergence of the recipient strain from other members of its species. The results indicate that horizontal transfer of the lux genes in nature is rare and that horizontal acquisition of the lux genes apparently has not contributed to speciation in recipient taxa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394989PMC
http://dx.doi.org/10.1128/JB.00101-08DOI Listing

Publication Analysis

Top Keywords

lux genes
64
genes luminous
20
lux
19
genes
17
lux gene
12
horizontal transfer
12
closely lux
12
phylogenetic analysis
8
transfer lux
8
genes luxcdabeg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!