Femtosecond vibrational spectroscopy was used to probe a functionally important dynamics and residual structure of myoglobin unfolded by 4 M guanidine HCl. The spectra of the dissociated CO indicated that the residual structure of unfolded myoglobin (Mb) forms a few hydrophobic cavities that could accommodate the dissociated ligand. Geminate rebinding (GR) of CO to the unfolded Mb is three-orders-of-magnitude faster and more efficient than the native Mb but similar to a model heme in a viscous solvent, suggesting that the GR of CO to heme is accelerated by the longer retention of the dissociated ligand near the Fe atom by the poorly-structured protein matrix of the unfolded Mb or viscous solvent. The inefficient GR of CO in native Mb, while dissociated CO is trapped in the primary heme pocket located near the active binding site, indicates that the tertiary structure of the pocket in native Mb plays a functionally significant role.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480693 | PMC |
http://dx.doi.org/10.1529/biophysj.108.130641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!