[Matrine-induced erythroid differentiation of K562 cells is associated with activation of the apoptotic pathway].

Nan Fang Yi Ke Da Xue Xue Bao

Department of Child Health Care, Zhongshan Bo'ai Hospital, Southern Medical University, Zhongshan 528403, China.

Published: March 2008

Objective: To observe matrine-induced erythroid differentiation of K562 cells in relation to activation of the apoptotic pathway in vitro.

Methods: K562 cells were cultured in the presence or absence of matrine at different concentrations for 4 days, and the morphological and ultramicrostructural changes of the cells were observed using inverted microscopy and transmission electron microscopy, respectively. The expression of apoptosis-related protein p27kip1 was detected by immunocytochemistry.

Results: Compared to untreated K562 cells, the cells treated with matrine at 0.10 g/L exhibited apoptostic characteristics in the cellular morphology and ultramicrostructure, with the expression of p27kip1 protein upregulated in a concentration- and time-dependent manner.

Conclusion: Matrine-induced erythroid differentiation of K562 cells is associated with cell apoptosis, and upregulation of p27kip1 protein expression may play a crucial role in the process of apoptosis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

k562 cells
20
erythroid differentiation
12
differentiation k562
12
cells associated
8
activation apoptotic
8
matrine-induced erythroid
8
p27kip1 protein
8
cells
7
k562
5
[matrine-induced erythroid
4

Similar Publications

Derivatives of D(-)-glutamine-based MMP-2 inhibitors as an effective remedy for the management of chronic myeloid leukemia-Part-III: Synthesis, biological screening and in silico binding interaction analysis.

Bioorg Chem

December 2024

Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:

Tyrosine kinase inhibitors (TKIs) have markedly improved the overall survival rate of patients with chronic myeloid leukemia (CML), enabling them to achieve a normal life expectancy. However, toxicity, relapse, and drug resistance continue to pose major challenges in the clinical treatment of CML. The progression of leukemia is directly connected to higher expression levels and enzymatic actions of matrix metalloproteinase-2 (MMP-2).

View Article and Find Full Text PDF

Treatment of chronic myeloid leukemia (CML) is a significant therapeutic challenge, and exploration of novel treatment approaches is an urgent necessity. This work investigates the anticancer properties of rutin-conjugated zinc oxide nanoparticles (Rut-ZnO NPs) against CML cells. Physicochemical properties of the NPs were studied by FT-IR, FE-SEM, XRD, zeta potential, and DLS analyses.

View Article and Find Full Text PDF

Molecular glues are promising protein-degrading agents that hold great therapeutic potential but face significant challenges in rational design, effective synthesis, and precise targeting of tumor sites. In this study, we first overcame some of these limitations by introducing a fumarate-based molecular glue handle onto specific ligands of therapeutic kinases (TBK1, FGFR, and Bcr-Abl), resulting in the effective degradation of these important cancer targets. Despite the broad applicability of the strategy, we unexpectedly discovered potent and widespread cytotoxicity across various cell lines, including noncancerous ones, rendering it less effective in cancer therapy.

View Article and Find Full Text PDF

Analysis of synthetic polymer hydrogel-based generation of leukemia stem cells.

Biochem Biophys Res Commun

December 2024

Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan. Electronic address:

Leukemia stem cells (LSCs), capable of simultaneous self-renewal and differentiation, are resistant to chemotherapy and the cause of relapse in refractory cases of leukemia. As a method to rapidly generate LSCs has not been established, research on LSCs as therapeutic targets has been hampered. Here, we demonstrate that K562 leukemia cells acquired LSC properties with increase in stemness markers such as CD34, Oct3/4, and Nanog and metabolic alterations towards OXPHOS by culturing cells on synthetic polymer hydrogels.

View Article and Find Full Text PDF

KMT2A rearrangements are associated with a poor clinical outcome in infant, pediatric, and adult acute lymphoblastic and myeloid leukemia. Here, we present a protocol to reconstruct chromosomal translocations with different partner genes of KMT2A in vitro. We describe steps for patient-specific single guide RNA (sgRNA) design, optimized sgRNA in vitro transcription, detailed purification of hematopoietic stem and progenitor cells (HSPCs) from umbilical cord blood (UCB), and CRISPR-Cas9 editing of the test cell line K562 as well as UCB HSPCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!