Ethoxzolamide, an almost forgotten inhibitor of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), is the only classical inhibitor whose structure in adduct with any isoform was not reported yet. We report here the inhibition data of this molecule with the 12 catalytically active mammalian isozymes (CA I-CA XIV) and the X-ray crystal structure with the cytosolic, ubiquitous isoform CA II. These data are presumably useful for the design of novel CA inhibitors, targeting various CA isozymes, considering that ethoxzolamide was already the lead molecule to obtain the second generation inhibitors, dorzolamide and brinzolamide, clinically used antiglaucoma agents with topical action, as well as various other investigational agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.03.023DOI Listing

Publication Analysis

Top Keywords

carbonic anhydrase
8
x-ray crystal
8
crystal structure
8
inhibitors
4
anhydrase inhibitors
4
inhibitors x-ray
4
structure ethoxzolamide
4
ethoxzolamide complexed
4
complexed human
4
human isoform
4

Similar Publications

Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.

View Article and Find Full Text PDF

Serendipitous high-resolution structure of Escherichia coli carbonic anhydrase 2.

Acta Crystallogr F Struct Biol Commun

February 2025

Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

X-ray crystallography remains the dominant method of determining the three-dimensional structure of proteins. Nevertheless, this resource-intensive process may be hindered by the unintended crystallization of contaminant proteins from the expression source. Here, the serendipitous discovery of two novel crystal forms and one new, high-resolution structure of carbonic anhydrase 2 (CA2) from Escherichia coli that arose during a crystallization campaign for an unrelated target is reported.

View Article and Find Full Text PDF

This study is focused on the design, synthesis, and evaluation of some sulfonamide derivatives for their inhibitory effects on human carbonic anhydrase (hCA) enzymes I, II, IX, and XII as well as for their antioxidant activity. The purity of the synthesized molecules was confirmed by the HPLC purity analysis and was found in the range of 93%-100%. The inhibition constant (K) against hCA I ranged from 0.

View Article and Find Full Text PDF

Tetrazole Is a Novel Zinc Binder Chemotype for Carbonic Anhydrase Inhibition.

ACS Med Chem Lett

January 2025

NEUROFARBA Department, Section of Pharmaceutical Science, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.

The tetrazole group is here proposed as a zinc-binding warhead for the inhibition of the metalloenzyme carbonic anhydrases. A set of synthesized derivatives incorporating the tetrazole moiety were evaluated as inhibitors against a panel of human isoforms, exhibiting values spanning between the submicromolar and low-to-medium micromolar ranges (0.62-19.

View Article and Find Full Text PDF

Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!