Several newer 6-fluoro/nitro-4-oxo-7-(sub)-4H-[1,3]thiazeto[3,2-a]quinoline-3-carboxylic acids (10-11a-q) were synthesised from 3,4-difluoro aniline and 3-fluoro-4-nitro aniline by nine-step synthesis. The compounds were evaluated for in vitro and in vivo antimycobacterial activities against Mycobacterium tuberculosis H37Rv (MTB), multidrug-resistant M. tuberculosis (MDR-TB) and Mycobacterium smegmatis (MC2) as well as being tested for their ability to inhibit the supercoiling activity of DNA gyrase from M. smegmatis. Among the synthesised compounds, 7-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)-6-nitro-4-oxo-4H-[1,3]thiazeto[3,2-a]quinoline-3-carboxylic acid (11l) was found to be the most active compound in vitro, with minimum inhibitory concentrations (MICs) of 0.09 microM and <0.09 microM against MTB and MTR-TB, respectively. Compound 11l was found to be 4 times and >506 times more potent than isoniazid against MTB and MDR-TB, respectively. In the in vivo animal model, 11l decreased the bacterial load in lung and spleen tissues by 30% and 42%, respectively, at a dose of 50 mg/kg body weight.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2007.12.007 | DOI Listing |
Sci Rep
January 2025
Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdańsk, Poland.
Staphylococcus aureus (S. aureus) can survive inside nonprofessional phagocytes such as keratinocytes, enabling it to evade antibiotics and cause recurrent infections once treatment stops. New antibacterial strategies to eliminate intracellular, multidrug-resistant bacteria are needed.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
School of Biomedical Engineering and Digital Health, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.
Photodynamic antimicrobial therapy (aPDT) can effectively kill bacteria without promoting drug resistance. However, the phototoxicity of photosensitizers in aPDT against normal cells hinders their practical applications. In this work, we report the utilization of an aggregation-induced emission (AIE)-active photosensitizer, DTTPB, to develop antibacterial dressing for effective eradication of both Gram-positive and Gram-negative bacteria.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain. Electronic address:
Chem Biol Interact
December 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland.
Phototoxic reactions are among the most common skin-related adverse effects induced by drugs. It is believed that the binding of chemicals to melanin biopolymers is a significant factor influencing skin toxicity. The formation of drug-melanin complexes can lead to the accumulation of drugs or their photodegradation products in pigmented cells, potentially affecting phototoxic reactions.
View Article and Find Full Text PDFInt J Pharm
November 2024
School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. Electronic address:
In this study, a porous polydopamine (PDA) nanoparticle-decorated β-glucan microcapsules (GMs) nanoplatform (PDA/GMs) were developed with macrophage-targeted biomimetic features and a carriers-within-carriers structure. Indocyanine green (ICG) and catalase (CAT) were subsequently co-encapsulated within the PDA/GMs to create a multifunctional nanotherapeutic agent, termed CIPGs. Furthermore, CIPGs and sinomenine (SIN) were co-loaded within a thermo-sensitive hydrogel to design an injectable delivery system, termed CIPG/SH, with potential for multi-modal therapy of rheumatoid arthritis (RA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!