The combined electrochemical oxidation-solar-light/immobilized TiO2 film process was conducted to degrade an azo dye, Reactive Black 5 (RB5). The toxicity was also monitored by the Vibrio fischeri light inhibition test. The electrochemical oxidation rapidly decolorized RB5 (55, 110 microM) with a supporting electrolyte of 2 gl(-1) NaCl at current density 277Am(-2) and pH 4. However, TOC mineralization and A(310) removal were low. Additionally, the treated solution showed high biotoxicity. RB5 at 110 microM significantly retarded the de-colorization efficiency by using the solar-light/immobilized TiO2 film process. The combined electrochemical oxidation-solar-light/immobilized TiO2 process effectively increased the removal of color, A(310), and TOC. The toxicity was also significantly reduced after 3h of solar irradiation. The results indicated that the low-cost combined process is a potential technique for rapid treatment of RB5.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2008.02.012 | DOI Listing |
Bioelectrochemistry
January 2025
Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China. Electronic address:
In this work, the electrochemical biosensor based on the subtle combination of terminal deoxynucleotidyl transferase (TdT), CRISPR/Cas14a, and magnetic nanoparticles (MNPs) was developed for the detection of nasopharyngeal carcinoma (NPC)-derived exosomes. Due to the synergistic effect of the following factors: the powerful elongation capacity of TdT for single-stranded DNA (ssDNA) with 3-hydroxy terminus, the outstanding trans-cleavage ability of CRISPR/Cas14a specifcally activated by the crRNA binding to target DNA, and the excellent separation ability of MNPs, the developed electrochemical biosensor exhibited high sensitivity for the detection of NPC-derived exosome, with a linear range from 6.0 × 10 ∼ 1.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; National University of Singapore, Department of Civil and Environmental Engineering, 1 Engineering Drive 2, 117576, Singapore. Electronic address:
The extensive use of the antimicrobial compound chlorhexidine (CHD) has emerged as a significant threat to both the ecological environment and human health. To address this concern, a photo-electrochemical cell-microbial fuel cell (PMFC) system was studied for CHD removal by incorporating, for the first time, the photocatalysts black phosphorus/carbon nitride (BPCN) and CuO into the bioanode and air cathode of an MFC, respectively. By combining electrochemical, macro-genomic, and intermediate product analyses, the underlying mechanisms of bioelectronic and photoelectronic synergies were elucidated.
View Article and Find Full Text PDFSmall
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Laboratory of Sensors/Actuators and Energy Harvesting, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania.
The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor, like sensing material, sensing element, and signal conditioning, as well as the electronic protection and signaling module of the critical concentrations of H.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Materials Science and Engineering, Guangdong Ocean University (Yangjiang Campus), Yangjiang 529500, China.
This study presents a comparative analysis of the influence of Ce-Gd and Gd-Y additions on the microstructural evolution, mechanical properties, and electrochemical behavior of extruded Mg-3Zn-Mn-Ca alloy rods. Despite the frequent incorporation of Gd, Y, and Ce as alloying elements in magnesium alloys, the systematic examination of their combined effects on Mg-Zn alloys has been limited. Our findings reveal that both Gd-Ce and Gd-Y additions significantly enhance the mechanical properties of Mg-3Zn-Mn-Ca alloy, although through differing mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!