The photocatalytic efficiency of two 2,4,6-triphenylpyrylium (TP(+)) based photocatalysts (supported on silica or incorporated inside zeolite Beta, 3wt%) for the degradation of 2,4-dichlorophenol (DCP) in aqueous media has been compared with TiO(2) (Degussa P-25). It was found that the efficiency of the degradation depends on the photocatalytic setup, recirculation through a tubular reactor being highly unfavorable for the TP(+)-based photocatalysts due to the deposition of the silica or zeolite particles. In contrast, high efficiency in DCP disappearance (up to 87%) and in the total organic content decrease (up to 62%) were obtained using a discontinuous batch reactor in which the TP(+) photocatalysts were uniformly suspended. Kinetic studies were also made and DCP degradation follows a first order kinetics. The obtained kinetic constants when corrected to account for the influence of the fraction of light absorbed and the amount of active sites shows that the intrinsic activity of TP(+) adsorbed on silica or incorporated inside zeolite Beta was over one order of magnitude higher than TiO(2) activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2008.01.075DOI Listing

Publication Analysis

Top Keywords

photocatalytic efficiency
8
compared tio2
8
degradation 24-dichlorophenol
8
silica incorporated
8
incorporated inside
8
inside zeolite
8
zeolite beta
8
higher intrinsic
4
intrinsic photocatalytic
4
efficiency
4

Similar Publications

We have developed a novel S-scheme mechanism to expand the photoresponse range of BiSiO. This study reports the successful creation of a CN/BS heterojunction photocatalyst, which is composed of g-CN and BiSiO. The synthesis was achieved through a simple two-step procedure, involving hydrothermal treatment and subsequent calcination.

View Article and Find Full Text PDF

Cu2O has attracted significant attention as a potential photocatalyst for CO2 reduction. However, its practical use is limited by rapid charge recombination, insufficient catalytic sites, and poor stability. In this study, we report a facile synthesis of Cu2O@BiOCl core-shell hybrids with well-defined shape of Cu2O and two-dimensional nanosheet structure of BiOCl.

View Article and Find Full Text PDF

Fluorine-expedited nitridation of layered perovskite SrTiO for visible-light-driven photocatalytic overall water splitting.

Nat Commun

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.

Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.

View Article and Find Full Text PDF

Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.

View Article and Find Full Text PDF

The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!