A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids. | LitMetric

Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids.

Chem Phys Lipids

Department of Chemistry, Wabash College, Crawfordsville, IN 47933, United States.

Published: May 2008

A variety of experimental methods indicate unique biophysical properties of membranes containing the highly polyunsaturated omega-3 fatty acid, docosahexaenoic acid (DHA). In the following we review the atomically detailed picture of DHA acyl chains structure and dynamics that has emerged from computational studies of this system in our lab. A comprehensive approach, beginning with ab-initio quantum chemical studies of model compounds representing segments of DHA and ending with large scale classical molecular dynamics simulations of DHA-containing bilayers, is described with particular attention paid to contrasting the properties of DHA with those of saturated fatty acids. Connection with experiment is made primarily through comparison with Nuclear Magnetic Resonance (NMR) studies, particularly those that probe details of the chain structure and dynamics. Our computational results suggest that low torsional energy barriers, comparable to kT at physiological conditions, for the rotatable bonds in the DHA chain are the key to the differences observed between polyunsaturated and saturated acyl chains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2008.02.013DOI Listing

Publication Analysis

Top Keywords

docosahexaenoic acid
8
saturated fatty
8
fatty acids
8
acyl chains
8
structure dynamics
8
dha
5
acyl chain
4
chain conformations
4
conformations phospholipid
4
phospholipid bilayers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!