AI Article Synopsis

Article Abstract

Introduction: Few conventional cytogenetic studies of squamous cell carcinoma (SCC) have been performed to date. The introduction of cytogenetic techniques such as comparative genomic hybridization (CGH) has resolved some of the problems associated with conventional cytogenetics. The aim of this study was to analyze the presence of genetic abnormalities in a series of patients with SCC using the technique of array CGH.

Material And Methods: The study included 8 patients (7 men and 1 woman; mean age, 75 years) diagnosed with primary SCC. DNA was extracted from frozen tissue and analyzed by array CGH.

Results: All cases had genetic alterations, with gains more frequent than losses. The chromosomal regions with gains, in descending order of frequency, were as follows: 5p15.2, 9q31.3-q33.2, 13q, 18q22, 1p21-p22, 1q24-q25, 3p13, 4q33-q34 (HMGB2, SAP30), 20p12.2 (JAG1), 21q21.1, and Xq21.33. The region 9p13.1-p13.3 was the only one to display recurrent loss. No correlation was observed between the presence of gains or losses and the clinical and pathological characteristics of the tumors.

Conclusions: This is the first study to use the technique of array CGH to analyze genetic alterations in SCC. The finding of certain previously described aberrations (gain of 5p) suggests the existence of recurrent abnormalities. Likewise, the observation of alterations in small regions of chromosome 1 highlights the sensitivity of the technique to detect small changes. Application of the technique to a larger series of cases will provide greater insight into the genetic abnormalities implicated in the process of tumorigenesis in SCC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1578-2190(08)70232-4DOI Listing

Publication Analysis

Top Keywords

squamous cell
8
cell carcinoma
8
comparative genomic
8
genetic abnormalities
8
technique array
8
genetic alterations
8
scc
5
[analysis cytogenetic
4
abnormalities
4
cytogenetic abnormalities
4

Similar Publications

Three-dimensional measurement of the depth of invasion in oral squamous cell carcinoma samples using Lugol's iodine-enhanced micro-computed tomography: an original study.

J Appl Oral Sci

January 2025

Nanjing University, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Department of Oral and Maxillofacial Trauma Orthognathic Plastic Surgery, Nanjing, China.

Objectives: Depth of invasion (DOI) in oral squamous cell carcinoma (OSCC) guides treatment and prognosis but lacks three-dimensional (3D) insight. Thus, this study aimed to investigate the feasibility and accuracy of Lugol's iodine-enhanced micro-computed tomography (CT) for the 3D measurement of DOI in OSCC samples.

Methodology: In total, 50 in vitro OSCC samples from Nanjing Stomatological Hospital (July 2022 to January 2024) were subjected to micro-CT imaging with a slice thickness of 50 μm following 3% Lugol iodine staining for 12 h, followed by pathological examination and staining.

View Article and Find Full Text PDF

The angiopoietin (Ang)-Tie axis, critical for endothelial cell function and vascular development, is a promising therapeutic target for treating vascular disorders and inflammatory conditions like sepsis. This study aimed to enhance the binding affinity of recombinant Ang1 variants to the Tie2 and explore their therapeutic potential. Structural insights from the Ang1-Tie2 complex enabled the identification of key residues within the Ang1 receptor binding domain (RBD) critical for Tie2 interaction.

View Article and Find Full Text PDF

Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation.

View Article and Find Full Text PDF

Direct lysine dimethylation of IRF3 by the methyltransferase SMYD3 attenuates antiviral innate immunity.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, People's Republic of China.

Interferon regulatory factor 3 (IRF3) is the key transcription factor in the type I IFN signaling pathway, whose activation is regulated by multiple posttranslational modifications. Here, we identify SMYD3, a lysine methyltransferase, as a negative regulator of IRF3. SMYD3 interacts with IRF3 and catalyzes the dimethylation of IRF3 at lysine 39.

View Article and Find Full Text PDF

Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!