Data are presented concerning the basic metabolism sites, the reaction paths crossing in them and regulatory and toxical effect of formaldehyde and nitric oxide being mediated through them. In particular, they include: glutathione-formaldehyde-dependent dehydrogenase path of S-nitrosoglutathione reduction, semi-carbaside-sensitive amino-oxidase (SSAO) and NO-synthase systems; transformation of thioproline and metallothioneines, including nitrosation reactions. Possibilities of hexamethylenetetramine synthesis in the organism as well as its metabolism in conditions of formaldehyde hyperproduction and nitrosative stress are discussed. The role of metabolism sites, common for formaldehyde and nitrogen oxide, in the mechanisms of toxical effect of these compounds and development of pathologic states is considered.
Download full-text PDF |
Source |
---|
Nanoscale
January 2025
Institute of Environmental Science, Fudan University, Shanghai 200433, People's Republic of China.
A novel catalyst was fabricated using a two-step nonthermal plasma method by regulating surface hydroxyl groups on Na/activated carbon (AC) with 0.1 wt% Pt loading (Pt/Na/AC (P&P)) and achieved high formaldehyde (HCHO) oxidation performance at ambient temperature. Based on characterization results, we found that in the first step of nonthermal plasma treatment under argon-water, the proportion of terminal OH groups (ter-OH groups) evidently increased.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran. Electronic address:
Ethnopharmacological Relevance: Fritillaria imperialis L. (Fabaceae), commonly known as "Laleh vazhgon", ethnomedicinally utilized in Iranian traditional medicine to treat joint pain, chronic daily headaches, and back pain.
Aim Of The Study: To investigate the antinociceptive, anti-neuropathic, and anti-migraine activities of Fritillaria imperialis bulbs essential oil (FIEO) as well as to uncover the potential mechanisms of action involved.
J Ethnopharmacol
January 2025
Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, 06000, Algeria.
Ethnopharmacological Relevance: Inula viscosa (L.) Aiton is a traditional medicinal plant widely distributed and used in Mediterranean countries, its leaves are prepared by maceration to treat, rheumatic pain, inflammatory diseases, diabetes, anemia and cancer.
Aim Of The Study: The present study purpose to investigate the anti-inflammatory efficacy of I.
Nitric Oxide
February 2025
Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China. Electronic address:
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, along with high mortality and disability rates. Pathological conversion of excess nitric oxide (NO) to S-nitrosoglutathion (GSNO) after TBI leads to high S-nitrosylation of intracellular proteins, causing nitrative stress. GSNO reductase (GSNOR) plays an important role by regulating GSNO and SNO-proteins (PSNOs) and as a redox regulator of the nervous system.
View Article and Find Full Text PDFPlant Physiol
December 2024
Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
Plant fertility is fundamental to plant survival and requires the coordinated interaction of developmental pathways and signaling molecules. Nitric oxide (NO) is a small, gaseous signaling molecule that plays crucial roles in plant fertility as well as other developmental processes and stress responses. NO influences biological processes through S-nitrosation, the posttranslational modification of protein cysteines to S-nitrosocysteine (R-SNO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!