Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Kv4 channel complexes mediate the neuronal somatodendritic A-type K(+) current (I(SA)), which plays pivotal roles in dendritic signal integration. These complexes are composed of pore-forming voltage-gated alpha-subunits (Shal/Kv4) and at least two classes of auxiliary beta-subunits: KChIPs (K(+)-Channel-Interacting-Proteins) and DPLPs (Dipeptidyl-Peptidase-Like-Proteins). Here, we review our investigations of Kv4 gating mechanisms and functional remodeling by specific auxiliary beta-subunits. Namely, we have concluded that: (1) the Kv4 channel complex employs novel alternative mechanisms of closed-state inactivation; (2) the intracellular Zn(2+) site in the T1 domain undergoes a conformational change tightly coupled to voltage-dependent gating and is targeted by nitrosative modulation; and (3) discrete and specific interactions mediate the effects of KChIPs and DPLPs on activation, inactivation and permeation of Kv4 channels. These studies are shedding new light on the molecular bases of I(SA) function and regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833991 | PMC |
http://dx.doi.org/10.1007/s11064-008-9650-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!