Assays for gamma-glutamyl transferase (GGT1, EC 2.3.2.2) activity in blood are widely used in a clinical setting to measure tissue damage. The well-characterized GGT1 is an extracellular enzyme that is anchored to the plasma membrane of cells. There, it hydrolyzes and transfers gamma-glutamyl moieties from glutathione and other gamma-glutamyl compounds to acceptors. As such, it has a critical function in the metabolism of glutathione and in the conversion of the leukotriene LTC4 to LTD4. GGT deficiency in man is rare and for the few patients reported to date, mutations in GGT1 have not been described. These patients do secrete glutathione in urine and fail to metabolize LTC4. Earlier pre-genome investigations had indicated that besides GGT1, the human genome contains additional related genes or sequences. These sequences were given multiple different names, leading to inconsistencies and confusion. Here we systematically evaluated all human sequences related to GGT1 using genomic and cDNA database searches and identified thirteen genes belonging to the extended GGT family, of which at least six appear to be active. In collaboration with the HUGO Gene Nomenclature Committee (HGNC) we have designated possible active genes with nucleotide or amino acid sequence similarity to GGT1, as GGT5 (formerly GGL, GGTLA1/GGT-rel), GGT6 (formerly rat ggt6 homologue) and GGT7 (formerly GGTL3, GGT4). Two loci have the potential to encode only the light chain portion of GGT and have now been designated GGTLC1 (formerly GGTL6, GGTLA4) and GGTLC2. Of the five full-length genes, three lack of significant nucleotide sequence homology but have significant (GGT5, GGT7) or very limited (GGT6) amino acid similarity to GGT1 and belong to separate families. GGT6 and GGT7 have not yet been described, raising the possibility that leukotriene synthesis, glutathione metabolism or gamma-glutamyl transfer is regulated by their, as of yet uncharacterized, enzymatic activities. In view of the widespread clinical use of assays that measure gamma-glutamyl transfer activity, this would appear to be of significant interest.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-008-0487-7DOI Listing

Publication Analysis

Top Keywords

amino acid
8
similarity ggt1
8
gamma-glutamyl transfer
8
ggt1
7
gamma-glutamyl
5
human gamma-glutamyltransferase
4
gamma-glutamyltransferase gene
4
gene family
4
family assays
4
assays gamma-glutamyl
4

Similar Publications

A novel bacterium, designated 19SA41, was isolated from the air of the Icelandic volcanic island Surtsey. Cells of strain 19SA41 are Gram-stain-negative, strictly aerobic, non-motile rods and form pale yellow-pigmented colonies. The strain grows at 4-30 °C (optimum, 22 °C), at pH 6-10 (optimum, pH 7.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s), the four-stranded structures formed by guanine-rich RNA sequences, are recognized by regions in RNA-binding proteins (RBPs) that are enriched in arginine-glycine repeats (RGG motifs). Importantly, arginine and glycine are encoded by guanine-rich codons, suggesting that some RGG motifs may both be encoded by and interact with rG4s in autogenous messenger RNAs (mRNAs). By analyzing transcriptome-wide rG4 datasets, we show that hundreds of RGG motifs in humans are at least partly encoded by rG4s, with an increased incidence for longer RGG motifs (~10 or more residues).

View Article and Find Full Text PDF

Cytochromes of the P450 superfamily are widespread in nature; they were found in all studied aerobic organisms. Although the degree of similarity between cytochromes P450 of different families is low, all enzymes of this superfamily have similar tertiary structures. In addition, all cytochromes P450, including enzymes of the CYP74 clan, contain substrate recognition sites in their sequences, which form the catalytic center.

View Article and Find Full Text PDF

Graves' disease is caused by overactivation of the thyroid-stimulating hormone receptor (TSHR). One approach for its treatment may be the use of negative allosteric modulators (NAM) of TSHR, which normalize TSHR activity and do not cause thyroid hormone (TH) deficiency. The aim of the work was to study the effect of a new compound 5-amino-4-(4-bromophenyl)-2-(methylthio)thieno[2,3-d]pyrimidine-6-carboxylic acid N-tert-butylamide (TPY4) on the basal and TSH-stimulated TH production in cultured FRTL-5 thyrocytes and on basal and thyrotropin-releasing hormone (TRH)-stimulated TH levels in the blood of rats.

View Article and Find Full Text PDF

Attenuating hyperammonemia preserves protein synthesis and muscle mass via restoration of perturbed metabolic pathways in bile duct-ligated rats.

Metab Brain Dis

January 2025

Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.

Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!