We present a detailed description of a laboratory-based multispectral fluorescence imaging system (MFIS) for plant leaves. Fluorescence emissions with 360-nm excitation are captured at four spectral bands in the blue, green, red, and far-red regions of the spectrum centered at 450, 550, 680, and 740 nm, respectively. Preliminary experiments conducted with soybean leaves treated with a herbicide (DCMU) and short-term exposures to moderately elevated tropospheric ozone environment demonstrated the utilities of the newly developed MFIS. In addition, with the aid of fluorescence images of normal soybean leaves, several mechanisms governing the fluorescence emissions are discussed. Imaging results illustrate the versatility of fluorescence imaging, which provides information on the spatial variability of fluorescence patterns over leaf samples.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.40.000157DOI Listing

Publication Analysis

Top Keywords

fluorescence imaging
12
multispectral fluorescence
8
imaging system
8
plant leaves
8
fluorescence emissions
8
soybean leaves
8
fluorescence
7
steady-state multispectral
4
imaging
4
system plant
4

Similar Publications

Sensing light's polarization and wavefront direction enables surface curvature assessment, material identification, shadow differentiation, and improved image quality in turbid environments. Traditional polarization cameras utilize multiple sensor measurements per pixel and polarization-filtering optics, which result in reduced image resolution. We propose a nanophotonic pipeline that enables compressive sensing and reduces the sampling requirements with a low-refractive-index, self-assembled optical encoder.

View Article and Find Full Text PDF

Background: Posterior scleritis (PS) is a rare phenotype of scleritis. Comprehensive epidemiological studies on PS in children are limited. We aimed to report on its clinical and imaging features in one of the largest pediatric series to date.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.

Methods: This cross-sectional, retrospective study used 1674 visual field (VF)-OCT pairs from 951 eyes for training and 429 pairs from 345 eyes for testing. Peripapillary retinal nerve fiber layer (RNFL) thickness map artifacts were corrected using a generative diffusion model.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.

Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.

View Article and Find Full Text PDF

Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.

Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!