Ancient asteroids enriched in refractory inclusions.

Science

Department of Astronomy, University of Maryland, College Park, MD 20742, USA.

Published: April 2008

Calcium- and aluminum-rich inclusions (CAIs) occur in all classes of chondritic meteorites and contain refractory minerals predicted to be the first condensates from the solar nebula. Near-infrared spectra of CAIs have strong 2-micrometer absorptions, attributed to iron oxide-bearing aluminous spinel. Similar absorptions are present in the telescopic spectra of several asteroids; modeling indicates that these contain approximately 30 +/- 10% CAIs (two to three times that of any meteorite). Survival of these undifferentiated, large (50- to 100-kilometer diameter) CAI-rich bodies suggests that they may have formed before the injection of radiogenic 26Al into the solar system. They have also experienced only modest post-accretionary alteration. Thus, these asteroids have higher concentrations of CAI material, appear less altered, and are more ancient than any known sample in our meteorite collection, making them prime candidates for sample return.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1154340DOI Listing

Publication Analysis

Top Keywords

ancient asteroids
4
asteroids enriched
4
enriched refractory
4
refractory inclusions
4
inclusions calcium-
4
calcium- aluminum-rich
4
aluminum-rich inclusions
4
inclusions cais
4
cais occur
4
occur classes
4

Similar Publications

Evaporation or freezing of water-rich fluids with dilute concentrations of dissolved salts can produce brines, as observed in closed basins on Earth and detected by remote sensing on icy bodies in the outer Solar System. The mineralogical evolution of these brines is well understood in regard to terrestrial environments, but poorly constrained for extraterrestrial systems owing to a lack of direct sampling. Here we report the occurrence of salt minerals in samples of the asteroid (101955) Bennu returned by the OSIRIS-REx mission.

View Article and Find Full Text PDF

Understanding the origin of bright shooting stars and their meteorite samples is among the most ancient of astronomy-related questions, which at larger scales has human consequences. As of today, only approximately 6% of meteorite falls have been firmly linked to their sources (Moon, Mars or asteroid (4) Vesta). Here we show that approximately 70% of meteorites originate from three recent break-ups of D > 30 km asteroids that occurred 5.

View Article and Find Full Text PDF
Article Synopsis
  • The Chicxulub impact, which happened 66 million years ago, is marked by a global layer rich in platinum-group elements like ruthenium, serving as a boundary between the Cretaceous and Paleogene eras.
  • We analyzed ruthenium isotopes from various impact sites, including those from the Cretaceous-Paleogene boundary and older impacts, to determine their origins.
  • Our findings suggest that the Chicxulub impactor was a carbonaceous asteroid from beyond Jupiter, while other impacts were linked to siliceous asteroids originating closer to the Sun.
View Article and Find Full Text PDF

Shared regulatory function of non-genomic thyroid hormone signaling in echinoderm skeletogenesis.

Evodevo

August 2024

College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada.

Thyroid hormones are crucial regulators of metamorphosis and development in bilaterians, particularly in chordate deuterostomes. Recent evidence suggests a role for thyroid hormone signaling, principally via 3,5,3',5'-Tetraiodo-L-thyronine (T4), in the regulation of metamorphosis, programmed cell death and skeletogenesis in echinoids (sea urchins and sand dollars) and sea stars. Here, we test whether TH signaling in skeletogenesis is a shared trait of Echinozoa (Echinoida and Holothouroida) and Asterozoa (Ophiourida and Asteroida).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!