Pregnenolone (P) and dehydroepiandrosterone (D) accumulate in the brain as unconjugated steroids and their sulfate (S) and fatty acid (L) esters. The microsomal acyl-transferase activity is highest in immature (1-3 weeks old) male rats. The immunocytochemical and biochemical evidence for P biosynthesis by differentiated oligodendrocytes is reviewed. The importance of P synthesis for its brain accumulation is assessed by the intracysternal injection of the inhibitor aminoglutethimide. Primary glial cell cultures convert P to 20-OH-P, PL, progesterone, 5 alpha-pregnane-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnane-20-one (Polone). Astroglial cell cultures also produce these metabolites, whereas neurons from 17-day mouse embryos only form 20-OH-P. P and D are converted to the corresponding 7 alpha-hydroxylated metabolites by a very active P-450 enzyme from rat brain microsomes. Several functions of neurosteroids are documented. P decreases in olfactory bulb of intact male rats exposed to the scent of estrous females. D inhibits the aggressive behavior of castrated male mice towards lactating female intruders. The D analog 3 beta-methyl-androst-5-en-17-one, which cannot be metabolized into sex steroids and is not demonstrably androgenic or estrogenic is at least as efficient as D. Both compounds elicit a marked decrease of PS in rat brain. The Cl- conductance of gamma-aminobutyric (GABAA) receptor is stimulated by GABA agonists, an effect which is enhanced by Polone and antagonized by PS. Thus, P metabolites in brain as well as steroids of extraencephalic sources may be involved physiologically in GABAA receptor function. The neurosteroids accumulated in brain may be precursors of sex steroid hormones and progesterone receptors have been localized in glial cells. P and D do not bind to any known intracellular receptor. A heat stable P binding protein has been found in brain cytosol with distinct ligand specificity. A binding component specific for steroids sulfates, including Polone S, DS and PS, in the order of decreasing affinity is localized in adult rat brain synaptosomal membranes. Its relationship to the GABAA receptor is under current investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0960-0760(91)90169-6DOI Listing

Publication Analysis

Top Keywords

rat brain
12
gabaa receptor
12
brain
9
pregnenolone dehydroepiandrosterone
8
male rats
8
cell cultures
8
neurosteroids biosynthesis
4
biosynthesis metabolism
4
metabolism function
4
function pregnenolone
4

Similar Publications

Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.

Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.

View Article and Find Full Text PDF

A primary rat neuron-astrocyte-microglia tri-culture model for studying mechanisms of neurotoxicity.

Front Toxicol

January 2025

Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States.

Primary cell cultures from rodent brain are widely used to investigate molecular and cellular mechanisms of neurotoxicity. To date, however, it has been challenging to reliably culture endogenous microglia in dissociated mixed cultures. This is a significant limitation of most neural cell models given the growing awareness of the importance of interactions between neurons, astrocytes and microglia in defining responses to neurotoxic exposures.

View Article and Find Full Text PDF

Fast-scan cyclic voltammetry (FSCV) is a widely used electrochemical technique to measure the phasic response of neurotransmitters in the brain. It has the advantage of reducing tissue damage to the brain due to the use of carbon fiber microelectrodes as well as having a high temporal resolution (10 Hz) sufficient to monitor neurotransmitter release in vivo. During the FSCV experiment, the surface of the carbon fiber microelectrode is inevitably changed by the fouling effect.

View Article and Find Full Text PDF

The anxieties and concerns about health hazards caused by microwave has been growing recently. Previous studies have reported microwave induced structural and functional injuries to brain. However, the biological effects caused by compound microwave were largely unexplored.

View Article and Find Full Text PDF

Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!