High dietary protein intake generates endogenous acid production, which may adversely affect bone health. Alkaline potassium citrate (Kcit)(2) may contribute to the neutralization of the protein-induced metabolic acidosis. We investigated the impact of 2 levels of protein intake and Kcit supplementation on acid-base metabolism and bone status in rats. Two-month-old Wistar male rats were randomly assigned to 4 groups (n = 30 per group). Two groups received a normal-protein content (13%) (NP) or a high-protein (HP) content diet (26%) for 19 mo. The 2 other groups received identical diets supplemented with Kcit (3.60%) (NPKcit and HPKcit). Rats were pair-fed based on the ad libitum intake of the HP group. At 9, 16, and 21 mo of age, 10 rats of each group were killed. The HP diet induced a metabolic acidosis characterized by hypercalciuria, hypermagnesuria, and hypocitraturia at all ages. Kcit supplementation neutralized this effect, as evidenced by decreased urinary calcium and magnesium excretion by the HPKcit rats. Femoral bone mineral density, biomechanical properties, bone metabolism biomarkers (osteocalcin and deoxypyridinoline), and plasma insulin-like growth factor 1 levels were not affected by the different diets. Nevertheless, at 21 mo of age, calcium retention was reduced in the HP group. This study suggests that lifelong excess of dietary protein results in low-grade metabolic acidosis without affecting the skeleton, which may be protected by an adequate calcium supply.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/138.4.718DOI Listing

Publication Analysis

Top Keywords

metabolic acidosis
12
potassium citrate
8
acid-base metabolism
8
metabolism bone
8
bone status
8
male rats
8
dietary protein
8
protein intake
8
kcit supplementation
8
groups received
8

Similar Publications

Objective: Metformin-associated lactic acidosis (MALA) is a rare but serious adverse drug reaction (ADR). The aim of the study was to identify clinical situations associated with the onset of MALA in patients hospitalised in the Nord Pas de Calais regional intensive care units (ICUs), and to assess its preventability.

Material And Methods: We included all cases of MALA, identified by metformin accumulation >2.

View Article and Find Full Text PDF

Tumor-induced metabolic immunosuppression: Mechanisms and therapeutic targets.

Cell Rep

January 2025

Université Côte d'Azur, INSERM, C3M, Nice, France; Équipe labellisée LIGUE Contre le Cancer, Nice, France. Electronic address:

Metabolic reprogramming in both immune and cancer cells plays a crucial role in the antitumor immune response. Recent studies indicate that cancer metabolism not only sustains carcinogenesis and survival via altered signaling but also modulates immune cell function. Metabolic crosstalk within the tumor microenvironment results in nutrient competition and acidosis, thereby hindering immune cell functionality.

View Article and Find Full Text PDF

Recent Advances and Future Directions in Extracorporeal Carbon Dioxide Removal.

J Clin Med

December 2024

Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.

Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.

View Article and Find Full Text PDF

Therapeutic Potential of Ketogenic Interventions for Autosomal-Dominant Polycystic Kidney Disease: A Systematic Review.

Nutrients

December 2024

Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia.

Background: Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!