Peripheral inflammation evokes functional and biochemical changes in the periphery and spinal cord which result in central sensitization and hypersensitivity. Inhibitory control systems from the rostral ventromedial medulla (RVM) are also activated. The present study investigates whether endogenous kappa-opioid receptor (KOPr) systems contribute to these neuroadaptations. Inflammation was induced by intraplantar injection of complete Freund's adjuvant (CFA) into one hindpaw. Mechanical and thermal thresholds were determined using the Von Frey and radiant heat tests, respectively. KOPr gene deletion in mice or systemic administration of the long-acting KOPr antagonist, norbinaltorphimine (norBNI) significantly exacerbated mechanical and thermal hypersensitivity of the ipsilateral, inflamed paw. Thermal and mechanical thresholds of the non-inflamed, contralateral hindpaw were unaffected by CFA treatment. However, gene deletion as well as norBNI treatment resulted in mechanical, but not thermal hypersensitivity of the non-inflamed paw. Similar results were obtained when norBNI was administered intrathecally or into the RVM in rats. These data demonstrate a previously unrecognized role of endogenous KOPr systems in inhibiting hyperalgesia during inflammation. Furthermore, they demonstrate that decreased KOPr activity in either the spinal cord or RVM not only enhances mechanical and thermal hyperalgesia of the inflamed limb but also leads to an unmasking of mechanical hyperalgesia at a site remote from inflammation. The differential effects of KOPr antagonism on mechanical versus thermal thresholds for the non-inflamed paw support the notion that distinct neuroanatomical or neurochemical mechanisms modulate the processing of thermal versus mechanical stimuli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553515 | PMC |
http://dx.doi.org/10.1016/j.pain.2008.01.023 | DOI Listing |
Macromol Rapid Commun
December 2024
Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, 56124, Italy.
This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.
Porous combustion has drawn vast attention over the last few decades leading to a variety of progressing applications particularly in industrial kitchens and household appliances that require time sensitive heating. The present study experimentally investigates the relationship between cooking duration and the thermal efficiency of a cooking pot heated on a porous burner providing a valuable insights into the effectiveness of the heating process in terms of both time and fuel consumption. To facilitate this investigation, a dedicated test bench is designed and constructed, equipped with thermometers and timer to effectively monitor the temporal/thermal behavior of the heating process.
View Article and Find Full Text PDFSci Rep
December 2024
The Ministry of Education Key Laboratory of High Efficiency Mining and Safety for Metal Mines & School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
Coarse particles in filling slurry are the primary factor causing wear in filling elbow pipes, and the wear mechanism of these particles on the pipes is influenced by various factors. To study the erosion and wear mechanism of elbow pipes caused by coarse particles, the motion state of coarse particles under different curvature radii, coarse particle gradations, and pipe diameters was investigated using a simulation method based on the coupling of Fluent and EDEM software, grounded in theories of fluid mechanics, rheology, and solid-liquid two-phase flow. The study explored the impact patterns and locations of wear induced by coarse particles on filling elbow pipes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Delhi Skill and Entrepreneurship University, Delhi, 110089, India.
This study explores the thermal conductivity and viscosity of water-based nanofluids containing silicon dioxide, graphene oxide, titanium dioxide, and their hybrids across various concentrations (0 to 1 vol%) and temperatures (30 to 60 °C). The nanofluids, characterized using multiple methods, exhibited increased viscosity and thermal conductivity compared to water, with hybrid nanofluids showing superior performance. Graphene oxide nanofluids displayed the highest thermal conductivity and viscosity ratios, with increases of 52% and 177% at 60 °C and 30 °C, respectively, for a concentration of 1 vol% compared to base fluid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Chemical Engineering Sciences, Foundation of Research and Technology- Hellas (FORTH/ICE-HT), Stadiou Street, Platani, Patras 26504, Greece.
Due to their outstanding electrical and thermal properties, graphene and related materials have been proposed as ideal candidates for the development of lightweight systems for thermoelectric applications. Recently, the nanolaminate architecture that entails alternation of continuous graphene monolayers and ultrathin polymer films has been proposed as an efficient route for the development of composites with impressive physicochemical properties. In this work, we present a novel layer-by-layer approach for the fabrication of highly ordered, flexible, heat-resistant, and electrically conductive freestanding graphene/polymer nanolaminates through alternating Marangoni-driven self-assembly of reduced graphene oxide (rGO) and poly(ether imide) (PEI) films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!