Cultured rat cortical astrocytes express two types of urotensin II (UII) binding sites: a high affinity site corresponding to the UT (GPR14) receptor and a low affinity site that has not been fully characterized. Activation of the high affinity site in astroglial cells stimulates polyphosphoinositide (PIP) turnover and provokes an increase in intracellular calcium concentration. We have hypothesized that the existence of distinct affinity sites for UII in rat cortical astrocytes could be accounted for by a possible cross-talk between UT and the ligand-gated ion channel GABA(A) receptor (GABA A R). Exposure of cultured astrocytes to UII provoked a bell-shaped increase in cAMP production, with an EC50 stimulating value of 0.83+/-0.04 pM, that was totally blocked in the presence of the adenylyl cyclase inhibitor SQ 22,536. In contrast, UII was found to inhibit forskolin-induced cAMP formation. In the presence of the specific PKA inhibitor H89, UII provoked a sustained stimulation of cAMP formation. Inhibition of PKA by H89 strongly reduced the stimulatory effect of UII on PIP metabolism. GABA and the GABA A R agonist isoguvacine provoked a marked inhibition of UII-induced cAMP synthesis and a significant reduction of UII-evoked PIP turnover. These data suggest that functional interaction between UT and GABA(A)R negatively regulates coupling of UT to the classical PLC/IP(3) signaling cascade as well as to the adenylyl cyclase/PKA pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2008.01.024 | DOI Listing |
PLoS One
January 2025
Laboratory of Developmental Biology, Department of Morphology and Genetics-Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil.
Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.
View Article and Find Full Text PDFNeuroreport
January 2025
Department of Neurosurgery.
Nowadays, intracerebral hemorrhage (ICH) is the main cause of death and disability, and motor impairment is a common sequel to ICH. Electroacupuncture (EA) has been widely used for functional recovery after ICH. However, its role and associated regulatory mechanisms in rehabilitation after ICH remain poorly understood.
View Article and Find Full Text PDFNeurotox Res
January 2025
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
This research seeks to address the gap in past studies by examining the role of the Nrf2 (nuclear factor erythroid 2-related factor 2) and HO-1 (heme oxygenase-1) signaling pathways in hypoxia and the potential effects of alpha-pinene on these factors. Wistar rats were divided into 7 experimental groups (n = 7): 1) control, 2 and 3) groups receiving alpha-pinene 5 and 10 mg/kg (i.p.
View Article and Find Full Text PDFNeurochem Res
January 2025
Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!