The roles played by singlet oxygen ((1)O(2)) in photodynamic therapy are not fully understood yet. In particular, the mobility of (1)O(2) within cells has been a subject of debate for the last two decades. In this work, we report on the kinetics of (1)O(2) formation, diffusion, and decay in human skin fibroblasts. (1)O(2) has been photosensitized by two water-soluble porphyrins targeting different subcellular organelles, namely the nucleus and lysosomes, respectively. By recording the time-resolved near-IR phosphorescence of (1)O(2) and that of its precursor the photosensitizer's triplet state, we find that the kinetics of singlet oxygen formation and decay are strongly dependent on the site of generation. (1)O(2) photosensitized in the nucleus is able to escape out of the cells while (1)O(2) photosensitized in the lysosomes is not. Despite showing a lifetime in the microsecond time domain, (1)O(2) decay is largely governed by interactions with the biomolecules within the organelle where it is produced. This observation may reconcile earlier views that singlet oxygen-induced photodamage is highly localized, while its lifetime is long enough to diffuse over long distances within the cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2008.02.011 | DOI Listing |
Photodiagnosis Photodyn Ther
January 2025
Maebashi-Institute of Technology, Systems Life Engineering, Gunma, 371-0816 Japan. Electronic address:
Introduction: The successful diagnosis and treatment of early-stage breast cancer enhances the quality of life of patients. As a promising alternative to recently developed magnetic resonance imaging-guided radiotherapy, we proposed fluorescence molecular imaging-guided photodynamic therapy (FMI-guided PDT), which requires no expensive equipment. In the FMI simulations, ICG-C11 which has emission peaks at near-infrared wavelengths was used as the FMI agent.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530000, China. Electronic address:
Due to resistance to common antibiotics, methicillin-resistant Staphylococcus aureus (MRSA) infections pose a significant threat to human health. In this study, we developed an injectable, adhesive, and biocompatible hydrogel with multiple functions. Specifically, carboxymethyl chitosan (CMCS) crosslinked with hyaluronic acid (HA) forms the primary framework of the hydrogel.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
Sewer overflows are a potential source of emerging contaminants to urban waters, posing a threat to ecosystems and human health. Herein, the performance and mechanism of ferrate(Ⅵ) (Fe(Ⅵ))/peroxymonosulfate (PMS), Fe(Ⅵ)/peroxydisulfate (PDS), and Fe(Ⅵ)/percarbonate (SPC) for the degradation of ofloxacin (OFL) in overflows were comparatively investigated. These systems achieved efficient degradation of OFL and the removal of conventional pollutants.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China. Electronic address:
Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC.
View Article and Find Full Text PDFBiomater Adv
January 2025
Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China. Electronic address:
Bacterial infections present a significant threat to human health, a challenge that is intensified by the slow pace of novel antibiotic development and the swift emergence of bacterial resistance. The development of novel antibacterial agents is crucial. Indocyanine green (ICG), a widely used imaging dye, efficiently generates reactive oxygen species (ROS) and heat for treating bacterial infections but suffers from aggregation and instability, limiting its efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!