Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
1. Synchronized mass production of seed crops, such as acorns, produces a resource pulse that may have far-reaching consequences for songbird populations through its effects on avian predators. Seed production in these forests represents only the first of several pulsed events. Secondary pulses emerge as mast-consuming rodents numerically respond to seed production and tertiary pulses emerge as generalist predators, such as raptors, numerically respond to rodents. In turn, these two groups reduce nest productivity and juvenile survivorship 1 and 2 years, respectively, after the initial pulse in seed production. 2. At our study site in south-eastern New York, USA, autumn acorn abundance (primary pulse) largely determines rodent abundance (secondary pulse) the following spring. We tested the hypotheses that the population dynamics of a shrub-nesting passerine (wood thrush Hylocichla mustelina), is influenced by rodents through the: (a) direct effect of predation by rodents; (b) indirect effect of rodents on the abundance of raptors (tertiary pulse); and (c) indirect effect of rodent abundance on raptor diet. The latter specifically hypothesizes that a crash in the rodent population in the wake of region-wide failure of acorn production leads to an extreme diet shift in raptors that increases post-fledging mortality in birds. 3. We conducted a 3-year study to examine variation in wood thrush nest success and fledgling survival, using radio telemetry, across a pulse of rodent abundance (i.e. low, medium and high). We also updated and reanalysed regional wood thrush population growth rates as a function of the annual variation in rodent abundance. 4. Fledgling survivorship, but not nest success, varied in relation to annual rodent abundance. Raptors and eastern chipmunks Tamias striatus were the most commonly identified predators on fledglings. Fledgling survivorship was greatest at intermediate rodent abundance consistent with a shift in raptor diet. Regional rate of wood thrush population growth showed a unimodal relationship with rodent abundance, peaking during years with intermediate rodent abundance. This unimodal pattern was due to wood thrush population growth rates near or below zero during rodent population crashes. 5. The telemetry study, pattern of regional abundance and synchronized population dynamics of coexisting thrushes suggest a common mechanism of behavioural changes in raptors in response to declines in rodent prey, which in turn affects thrush population dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2656.2008.01378.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!