Viruses have evolved multiple mechanisms to evade the innate immune response, particularly the actions of interferons (IFNs). We have previously reported that exposure of dendritic cells (DCs) to foot-and-mouth disease virus (FMDV) in vitro yields no infection and induces a strong type I IFN (IFN-alpha and IFN-beta) response, indicating that DCs may play a critical role in the innate response to the virus. In vivo, FMDV induces lymphopenia and reduced T-cell proliferative responses to mitogen, viral effects that may contribute to evasion of early immune responses. In this study we analyzed the in vivo effects of FMDV infection on the IFN-alpha response of two populations of dendritic cells. During the acute phase of infection of swine, production of IFN-alpha from monocyte-derived DCs (MoDCs) and skin-derived DCs (skin DCs) is inhibited. This effect occurs concurrently with rising viral titers in the blood; however, these cells are not productively infected. Interestingly, there are no changes in the capability of these DCs to take up particles and process antigens, indicating that antigen-presenting cell function is normal. These data indicate that inhibition of the IFN-alpha response of dendritic cell populations from blood and skin by FMDV enhances viral pathogenesis in infected animals.

Download full-text PDF

Source
http://dx.doi.org/10.1089/vim.2007.0097DOI Listing

Publication Analysis

Top Keywords

dendritic cells
12
foot-and-mouth disease
8
disease virus
8
ifn-alpha response
8
dcs
6
response
5
interferon-alpha production
4
production swine
4
dendritic
4
swine dendritic
4

Similar Publications

Dendritic cells (DCs), the primary antigen-presenting cells, have traditionally been identified by CD103 molecules in rats, whereas mouse and human DCs are identified by CD11c molecules. However, this history does not preclude the existence of CD103 DCs in rats. To explore this possibility, we examined MHCII cells in rat spleen and thymus, identifying a novel population of CD103MHCIICD45RCD172a cells.

View Article and Find Full Text PDF

Estrogen, estrogen receptor and the tumor microenvironment of NSCLC.

Int J Cancer

January 2025

Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Lung cancer remains the foremost cause of cancer-related mortality worldwide. Clinical observations reveal a notable increase in both the proportion and mortality rate among female non-small cell lung cancer (NSCLC) patients compared to males, a trend that continues to escalate. Extensive preclinical research underscores the pivotal role of estrogen in the initiation, progression, prognosis, and treatment response of NSCLC.

View Article and Find Full Text PDF

Rheumatoid Arthritis (RA) is an autoimmune, chronic, systemic inflammatory disease that causes redness, swelling, stiffness, and joint pain. It is a long-lasting disease that can have a widespread impact on the body, often affecting the hands, feet, and wrists. The immune cells, such as dendritic cells, T cells, B cells, macrophages, and neutrophils, play a significant role in bone degradation and inflammation.

View Article and Find Full Text PDF

Despite the favorable effects of immunotherapies in multiple types of cancers, its complete success in CNS malignancies remains challenging. Recently, a successful clinical trial of cytokine-induced killer (CIK) cell immunotherapy in patients with glioblastoma (GBM) has opened a new avenue for adoptive cellular immunotherapies in CNS malignancies. Prompt from these findings, herein, we investigated whether dendritic cells (DC) in combination with cytokine-induced killer cells (DC-CIK) could also provide an alternative and more effective way to improve the efficacy of GBM treatment.

View Article and Find Full Text PDF

Bioactive microspheres to enhance sonodynamic-embolization-metalloimmune therapy for orthotopic liver cancer.

Biomaterials

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China. Electronic address:

The development of novel microspheres for the combination of sonodynamic therapy (SDT) with transarterial embolization (TAE) therapy to amplify their efficacy has received increasing attention. Herein, a novel strategy for encapsulating sonosensitizers (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!